Τι μας έμαθαν οι αρχαίοι (Δημ. Σαραντάκος) 9 – Ο Πυθαγόρας και οι Ελεάτες φιλόσοφοι
Posted by sarant στο 27 Μαρτίου, 2018
Εδώ και λίγο καιρό άρχισα τη δημοσίευση αποσπασμάτων από το βιβλίο του Δημήτρη Σαραντάκου «Τι μας έμαθαν επιτέλους οι αρχαίοι Έλληνες;» που κυκλοφόρησε το 2010 από τις εκδόσεις Γνώση και έχει τον υπότιτλο «Χρηστομάθεια». Κανονικά οι δημοσιεύσεις αυτές γίνονται κάθε δεύτερη Τρίτη.
Η σημερινή συνέχεια είναι η ένατη. Η προηγούμενη συνέχεια, που είχε κατ’ εξαίρεση δημοσιευτεί Τετάρτη, βρίσκεται εδώ. Έχουμε πια περάσει στο δεύτερο μέρος του βιβλίου, που έχει εργοβιογραφικά σκιαγραφήματα δημιουργών.
Πυθαγόρας Μνησάρχου Σάμιος
Η εγκατάσταση και η δράση του Ξενοφάνη στην Ελέα, σηματοδοτεί την τάση να μεταναστεύσει η φιλοσοφία από την Ιωνία στην Κάτω Ιταλία, όπου άκμαζαν σπουδαίες ελληνικές πόλεις. Στην τάση αυτή εντάσσεται και η περίπτωση του Πυθαγόρα. Συνομήλικος του Ξενοφάνη (γεννήθηκε κι αυτός το 570), έφυγε από την πατρίδα του και επί τριάντα χρόνια ταξίδεψε σε πολλές χώρες, για να εγκατασταθεί τελικά στον Κρότωνα της Κάτω Ιταλίας.
Ο Πυθαγόρας καταγόταν από επιφανή οικογένεια της Σάμου. Το όνομα Πυθαγόρας του το έδωσαν οι γονείς του προς τιμήν της Πυθίας που προφήτευσε τη γέννηση του. Ο Διογένης Λαέρτιος (Βίοι Φιλοσόφων, βιβλίο όγδοο) αναφέρει για τον Πυθαγόρα ότι : «Νεαρός ακόμη, παρακινημένος από τη φιλομάθειά του, έφυγε από την πατρίδα του για να μυηθεί σε όλες τις ελληνικές και βαρβαρικές τελετές. Πήγε και στην Αίγυπτο, και τότε ο Πολυκράτης τον σύστησε με επιστολή του στον Άμαση. Έμαθε τέλεια τα αιγυπτιακά, όπως λέει ο Αντιφών στο Περί των εν αρετή πρωτευσάντων, και επισκέφθηκε τους Χαλδαίους και τους μάγους. Κατόπιν στην Κρήτη με τον Επιμενίδη κατέβηκε στο Ιδαίον Άντρον, αλλά και στην Αίγυπτο είχε μπει στα άδυτα. Έτσι γνώρισε τα μυστικά για τους θεούς. Στη συνέχεια επέστρεψε στη Σάμο, επειδή όμως βρήκε την πατρίδα του τυραννοκρατούμενη από τον Πολυκράτη, έφυγε και πάλι».
Λέγεται πως επισκέφθηκε την Αραβία, τη Φοινίκη, τη Συρία, τη Χαλδαία, τις Ινδίες, την Αίγυπτο αλλά και τη Γαλατία. Ο Πυθαγόρας υπήρξε ένας από τους μεγαλύτερους αρχαίους έλληνες φιλοσόφους και κατά τον Ηράκλειτο «από όλους τους ανθρώπους ο πλέον ενδελεχής ερευνητής» Τελικά, πενηντάρης πλέον εγκαταστάθηκε στον Κρότωνα, σημαντική πόλη της Μεγάλης Ελλάδας, διάσημη για τους γιατρούς της, και εκεί έγινε διδάσκαλος.
Η επιβλητική του εμφάνιση, η μεγάλη του μόρφωση και η καινοτομία του να δέχεται στη σχολή του άνδρες και γυναίκες, του εξασφάλισαν πολλές εκατοντάδες μαθητών. Ήταν ο πρώτος διανοητής που και διακήρυξε και έκανε πράξη την ισότητα των δύο φύλων. Γιατί όχι μόνο είχε πολλές μαθήτριες, αλλά τις ανέδειξε σε προσωπικότητες σεβαστές στο Πανελλήνιο. Μολονότι ο Τίμων ο Αθηναίος τον ειρωνεύεται πως ήταν «ταχυδακτυλουργός του σοβαρού λόγου, που ψάρευε ανθρώπους», το γεγονός πως δυο πολύ κοντινοί του άνθρωποι, η γυναίκα του η Θεανώ και η κόρη τους η Δαμώ, τον θαύμαζαν και τον υποστήριζαν, από μόνο του επιβεβαιώνει την αξία του.
Στους μαθητές του επέβαλλε αυστηρότατους κανόνες που μετέτρεψαν τη σχολή του σε ένα είδος μοναστηριού. Τα μέλη της πυθαγόρειας κοινότητας, του Θιάσου, όπως λεγόταν, έδιναν όρκο πίστης. Επί πέντε χρόνια ήταν υποχρεωμένα να παραμένουν σιωπηλά και να ακούνε μόνο αυτά που τους δίδασκε, χωρίς ποτέ να βλέπουν τον ίδιο. Μετά το τέλος αυτής της δοκιμασίας, οι μαθητές του, γίνονταν ισότιμα μέλη της κοινότητας, στην οποία όλοι είχαν ίσα δικαιώματα και είχαν όλα τα αγαθά από κοινού. Δεν έπρεπε να τρώνε κρέας, αυγά και κουκιά. Κρασί μπορούσαν να πίνουν, αλλά αραιωμένο με νερό.
Απαγορευόταν επίσης στα μέλη της κοινότητας να σκοτώνουν αβλαβή για τον άνθρωπο ζώα ή να καταστρέφουν τα δέντρα. Δεν έπρεπε να προσφέρουν αιματηρές θυσίες ούτε να ορκίζονται. Αρκούσε η διαβεβαίωσή τους. Να μη γελάνε, αλλά ούτε να είναι σκυθρωποί. Στο τέλος κάθε μέρας έπρεπε να κάνουν την αυτοκριτική τους, για τυχόν αδικήματα ή παραλείψεις τους.
Η απαγόρευση του φόνου, των αιματηρών θυσιών και της κατανάλωσης κρέατος και αυγών βασιζόταν στην πίστη του Πυθαγόρα και των μαθητών του πως υπάρχει ψυχή, που παραμένει αθάνατη, μεταβαίνοντας όμως σε άλλο σώμα, όχι μόνο ανθρώπινο αλλά και των ζώων. Για την απαγόρευση των κουκιών οι εξηγήσεις που έδινε είναι μάλλον απλοϊκές [Η εντολή του Πυθαγόρα να μην τρώνε κουκιά (κυάμων ἀπέχεσθαι), στηριζόταν αφενός μεν στην ομοιότητα που παρουσιάζουν τα κουκιά, όταν απαλλαγούν από τη φλούδα τους, με τα ανδρικά γεννητικά όργανα, αφετέρου δε στον μύθο πως όταν εκτεθούν νύχτα στο φως της πανσελήνου μετατρέπονται … σε αίμα!]. Κατά τον Ηρακλείδη τον Ποντικό και τον Διογένη Λαέρτιο, ισχυριζόταν πως κάποτε υπήρξε Αιθαλίδης και ήταν γιος του Ερμή. Ο Ερμής του ζήτησε να διαλέξει ό,τι ήθελε, εκτός από την αθανασία. Ζήτησε λοιπόν, όσο ζει, να θυμάται όσα του έχουν συμβεί. Έτσι μπορούσε να επαναφέρει στη μνήμη του τα πάντα από τις προηγούμενες ζωές του.
Ο Πυθαγόρας είναι ο πρώτος που ονόμασε τον εαυτό του «φιλόσοφο», και το περιεχόμενο των μαθημάτων του είχε τέσσερις ενότητες: γεωμετρία, αριθμητική, αστρονομία και μουσική. Ήταν ο πρώτος που ανακάλυψε τη σχέση μαθηματικών και μουσικής. Σύμφωνα με τον Πρόκλο, πρώτος αυτός ανήγαγε τη γεωμετρία σε επιστήμη. Κατά τον Απολλώνιο δε, όταν απέδειξε το θεώρημα που πήρε το όνομά του, ότι δηλαδή το τετράγωνο της υποτείνουσας ορθογωνίου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, προσέφερε εκατόμβη (μολονότι αυτό ήταν αντίθετο με την αυστηρή απαγόρευση των θυσιών).
Η αυστηρή πειθαρχία των Πυθαγορείων και ο μυστικισμός της λειτουργίας του διδακτηρίου τους προκάλεσαν τις υποψίες των Κροτωνιατών, που τους φοβήθηκαν πως σκόπευαν να εγκαθιδρύσουν τυραννία. Κατά τον Διογένη τον Λαέρτιο, επιτέθηκαν στο σπίτι του επιφανούς Πυθαγόρειου Μίλωνα, όπου είχαν συγκεντρωθεί οι μαθητές του, και το πυρπόλησαν σκοτώνοντας τετρακόσιους. Ο ίδιος ο Πυθαγόρας, στην προσπάθειά του να διαφύγει, βρήκε τον θάνατο, αν και ο Δικαίαρχος γράφει πως πέθανε στον ναό των Μουσών στο γειτονικό Μεταπόντιο, παραμένοντας νηστικός επί σαράντα ημέρες.
Ο Πυθαγόρας δεν έγραψε τίποτα. Ο Διογένης ο Λαέρτιος λέει πως είχε εμπιστευθεί στην κόρη του τη Δαμώ το μόνο βιβλίο του, τα Σχόλια, με την εντολή να μην το δείξει σε κανέναν, και εκείνη τήρησε την πατρική εντολή, μολονότι μετά τον θάνατο του Πυθαγόρα θα μπορούσε να πουλήσει το μοναδικό του βιβλίο σε υψηλή τιμή. Έτσι ό,τι ξέρουμε για τη διδασκαλία του προέρχεται από τους μαθητές του.
Οι Ελεάτες φιλόσοφοι
Η σχολή που ίδρυσε ο Ξενοφάνης στην Ελέα πολύ σύντομα έγινε ακουστή στο Πανελλήνιο, κι αυτό χάρη σε δυο μαθητές του Κλαζομένιου φιλοσόφου, τον Παρμενίδη και τον Ζήνωνα.
Παρμενίδης. Ο Παρμενίδης γεννήθηκε στην Ελέα της Κάτω Ιταλίας στα τέλη του 6ου αιώνα και επηρεάστηκε από τις απόψεις τόσο του Πυθαγόρα όσο και του Ξενοφάνη. Θεωρείται η πλέον πρωτότυπη μορφή της προσωκρατικής σκέψης. Σε αντίθεση με τους ίωνες φυσιολόγους δεν αναζητά την ενότητα του κόσμου σε μια φυσική ουσία, αλλά στην ίδια την «οντότητα» των πραγμάτων που μας περιβάλλουν, στο Είναι όλων των όντων και όλων των πραγμάτων. Ο Παρμενίδης ανέπτυξε τις φιλοσοφικές του αντιλήψεις στο βιβλίο του Περί φύσεως, που είναι γραμμένο σε εξάμετρους στίχους και στην ιωνική διάλεκτο, επιθυμώντας πιθανόν να τις συνδέσει με τα ομηρικά έπη, δίνοντάς σ’ αυτές μορφή θείας αποκάλυψης. Από το έργο του Παρμενίδη, που το επαινούσαν οι αρχαίοι τεχνοκρίτες, σώθηκαν μόνο μερικά αποσπάσματα.
Στο προοίμιο του ποιήματoς περιγράφεται το ταξίδι του ποιητή πάνω σε άρμα, οδηγούμενο από κόρες του ΄Ηλιου, προς μια ανώνυμη θεά. Ακολουθεί η Αλήθεια, στην οποία μιλά η θεά επιχειρώντας να φτάσει στην ουσία των πραγμάτων: «Αλλά ωστόσο θα μάθεις και τούτο, πως τα δοκούντα θα έπρεπε να είναι απολύτως δεκτά, όλα δεκτά στο σύνολό τους ως όντα».
Παρουσιάζοντας τα φαινόμενα ως όντα, ο Παρμενίδης εισάγει στη φιλοσοφία το Είναι και ουσιαστικά είναι δημιουργός του κλάδου της Οντολογίας δηλαδή του κλάδου που ερευνά το Ον, το Είναι, και σε αντίθεση με τους ίωνες φυσικούς φιλόσοφους, ο Παρμενίδης δεν διερωτάται για το τι των όντων, αλλά στρέφει την προσοχή μας στο Είναι. Σε ένα άλλο απόσπασμα αντιδιαστέλλει το Είναι, την ύπαρξη των όντων, με το Μηδέν, το οποίο και απορρίπτει, μη αποδεχόμενος τη σύλληψη του απόλυτου Μηδενός ως αντίθετου στο Είναι. Παρόλο που αναφέρει αρχικά τις δύο οδούς, του Είναι και του Μηδενός, ως τις μόνες που μπορούν να νοηθούν, σπεύδει να υπογραμμίσει ότι η οδός του Είναι είναι η μόνη αληθινή και ότι μόνον το Είναι μπορεί να αποτελέσει αυθεντικό αντικείμενο της νόησης.
Άσχετα από τη μεταβολή των εξωτερικών πραγμάτων, το Είναι, που αφορά αδιακρίτως κάθε ον, αποτελεί το μοναδικό αντικείμενο της αλήθειας, η οποία δεν αρνείται τον κόσμο και την πολλαπλότητα, την κίνηση και την πολυμορφία, αλλά υπογραμμίζει την ενότητα και τη συνέχεια που τον διέπει, αν φυσικά τον δούμε γεμάτο από το Είναι. Και βέβαια στην παρμενίδεια φιλοσοφία η νόηση δεν εξαρτάται από τις αισθήσεις, αλλά εισδύει στη βαθύτερη ουσία των πραγμάτων.
Στο δεύτερο τμήμα του ποιητικού έργου του Παρμενίδη, η θεά κατηγορεί τους ανθρώπους ότι διχοτομούν τον κόσμο επηρεασμένοι από τις αισθήσεις τους, κατατάσσοντας τα όντα στις δύο αλληλοαποκλειόμενες και αντίθετες μορφές του φωτός και της νύκτας. Έχουμε λοιπόν για πρώτη φορά την ανάπτυξη ενός δυϊστικού φιλοσοφικού συστήματος, αντίθετου με το μονιστικό ιωνικό σύστημα της μίας αρχής του κόσμου. Ο Παρμενίδης χρησιμοποιεί δύο ισότιμες αρχές-μορφές, που με τη συνεργασία τους και την ανάμιξή τους δημιουργούν τον κόσμο και τον διέπουν.
Ο Πλάτων αναφέρει επίσης πως ο Παρμενίδης ήρθε στην Αθήνα σε ηλικία 65 ετών και ότι τον συναναστρεφόταν ο νεαρότατος τότε Σωκράτης (14-16 ετών). Έτσι συμπεραίνεται πως ο Παρμενίδης θα είχε γεννηθεί το 520 π.Χ. και ήρθε και έμεινε στην Αθήνα περί το 455 π.Χ. Στον ομώνυμο διάλογό του ο Πλάτων εκφράζεται για τον Παρμενίδη με εξαιρετική εκτίμηση, ενώ αντίθετα ο Αριστοτέλης πολεμούσε τις θεωρίες του Παρμενίδη και ολόκληρης της ελεατικής σχολής.
Ζήνων Τευταγόρα Ελεάτης. Ήταν ο αγαπημένος μαθητής του Παρμενίδη, κατά 25 χρόνια νεότερός του, και τον διαδέχθηκε στην ηγεσία της σχολής. Λέγεται ότι βοήθησε τον δάσκαλό του να συντάξει τους Νόμους της Ελέας, στους οποίους οι Ελεάτες ορκίζονταν πίστη κάθε χρόνο. Γεννήθηκε γύρω στο 488 π.Χ. στην Ελέα και έζησε μερικά χρόνια στην Αθήνα, και λέγεται ότι ανέλυε και εξηγούσε τις θεωρίες και τα δόγματά του στον Περικλή και τον Καλλία, με αμοιβή 100 μνες.
Ο Ζήνων αφιέρωσε όλη την ενέργειά του για να επεξηγήσει και να εξελίξει το φιλοσοφικό σύστημα του Παρμενίδη, στην πραγματικότητα όμως δεν πρόσθεσε τίποτα το θετικό στη θεωρία του δασκάλου του, παρά αφιερώθηκε στο να αρνείται και να αντικρούει τις απόψεις των αντιπάλων του. Ουσιαστικά η συνεισφορά του στην ελεατική φιλοσοφία είναι εντελώς αρνητική.
Δίδασκε πως ο κόσμος των αισθήσεων είναι μια ψευδαίσθηση επειδή αποτελείται από κίνηση (ή αλλαγή) και πολλαπλότητα, την ύπαρξη των οποίων αρνιόταν. Κατά τον Παρμενίδη, το πραγματικό Όν είναι απολύτως ένα και δεν υπάρχει πολλαπλότητα σ’ αυτό. Είναι στατικό και αμετάβλητο. Η κοινή λογική λέει πως υπάρχει και κίνηση και πολλαπλότητα. Αυτή είναι και η πυθαγόρεια αντίληψη της πραγματικότητας ενάντια στην οποία επιχειρηματολογούσε ο Ζήνων, υποστηρίζοντας πως η κοινή αντίληψη της πραγματικότητας οδηγεί σε παράδοξα και οξύμωρα.
Έμειναν στην ιστορία τα λεγόμενα «παράδοξα του Ζήνωνα», γνωστότερο από τα οποία είναι πως ο Αχιλλέας δεν θα μπορούσε ποτέ να φτάσει μια χελώνα αν αυτή ξεκινούσε πριν από αυτόν. Σύμφωνα με τα επιχειρήματα του Ζήνωνα, αν η χελώνα ξεκινήσει με προβάδισμα, για παράδειγμα, ενός σταδίου, ο Αχιλλέας (ο ωκύπους της Μυθολογίας), δεν θα μπορέσει ποτέ να φτάσει τη χελώνα. Αν θεωρήσουμε ότι ο Αχιλλέας είναι 100 φορές πιο γρήγορος από τη χελώνα, τότε όταν θα έχει διανύσει ένα στάδιο, η χελώνα θα έχει διανύσει ένα στάδιο και ένα εκατοστό του σταδίου. Όταν ο Αχιλλέας διανύσει ένα στάδιο και ένα εκατοστό του σταδίου, η χελώνα θα έχει διανύσει ένα στάδιο και ένα εκατοστό και ένα εκατοστό του εκατοστού του σταδίου κ.ο.κ. Επομένως η χελώνα πάντα θα προπορεύεται, επομένως ο Αχιλλέας δεν μπορεί να την φτάσει.
Παρά την προφανή παραδοξότητά τους και την έλλειψη κάθε λογικής συνέπειας, το παράδοξο αυτό εισάγει την έννοια του απειροστικού λογισμού, και αυτή είναι η αιτία που μεγάλοι μαθηματικοί και φιλόσοφοι ασχολήθηκαν με τα παράδοξα του Ζήνωνα από την αρχαιότητα μέχρι και τις μέρες μας.
Ο Πλάτωνας αναφέρει πως ο Ζήνων άρχισε να διατυπώνει τις αρχές του φιλοσοφικού του συστήματος σε πολύ νεαρή ηλικία. Αν και έχουν σωθεί ελάχιστα από τα γραπτά του, τα περισσότερα που γνωρίζουμε γι’ αυτόν προέρχονται από τον Αριστοτέλη.
Υπέρμαχος της ελευθερίας, δεν δίστασε να ρισκάρει τη ζωή του για να απαλλάξει την πατρίδα του από έναν τύραννο. Το αν πέθανε στην προσπάθεια ή αν επιβίωσε της πτώσης του τυράννου είναι ένα σημείο στο οποίο οι ειδήμονες διαφωνούν. Ακόμα και το όνομα του τυράννου είναι σημείο διαφωνίας.
Εμπεδοκλής Μέτωνος* Ακραγαντίνος. Γεννήθηκε στον Ακράγαντα, στη δεύτερη ως προς τον πλούτο και τη δύναμη πόλη της Σικελίας μετά τις Συρακούσες. Αξίζει να αναφερθεί ότι είναι ο μόνος γηγενής πολίτης μιας δωρικής πολιτείας, που έπαιξε μεγάλο ρόλο στην ιστορία της φιλοσοφίας. Καταγόταν από επιφανή οικογένεια και ήταν εγγονός του Ολυμπιονίκη Εμπεδοκλή, που το 496 π.Χ. στέφθηκε νικητής σε ιππικούς αγώνες στην Ολυμπία. Ο πατέρας του κατείχε υψηλό αξίωμα στη διακυβέρνηση του τόπου του και πρωταγωνίστησε στις πολιτικές διαμάχες της εποχής του, το δε 470 π.Χ. συνέργησε στην κατάλυση της αριστοκρατικής τυραννίας του Θρασυδαίου που είχε διαδεχθεί τον πατέρα του, τον Θήρωνα.
Ο Εμπεδοκλής συνεχίζει και συμπληρώνει το έργο των προγόνων του. Όταν η μερίδα των ολιγαρχικών φάνηκε να επανακτά την ισχύ της, επιτίθεται εναντίον της, κήρυκας και προστάτης των δικαιωμάτων του λαού, αποκαθιστώντας τη δημοκρατία. Λέγεται μάλιστα ότι του προσέφεραν το βασιλικό στέμμα, αλλά το απέρριψε με περιφρόνηση. Με αυτήν του τη χειρονομία θυμίζει μια ανάλογη χειρονομία του εφάμιλλού του στη φιλοσοφία Ηράκλειτου.
Ο Εμπεδοκλής θαύμαζε τον Πυθαγόρα, για τον οποίο λέει: «Και υπήρχε ανάμεσά τους ένας άνθρωπος με απέραντες γνώσεις, αυθεντία στα κάθε λογής σοφά έργα, που είχε αποκτήσει απροσμέτρητο πνευματικό πλούτο, γιατί όποτε επιστράτευε το πνεύμα του σε όλο του το μεγαλείο, έβλεπε εύκολα το καθετί που υπάρχει σε βάθος δέκα και είκοσι γενεών».
Στο πρόσωπό του οι Ακραγαντίνοι δεν έβλεπαν μόνο έναν μεγάλο φιλόσοφο αλλά και έναν άξιο πολιτικό, ιατρό, μάντη, μάγο και ποιητή. Στη βιογραφία του, όπως διαμορφώθηκε με τον καιρό, αφθονούν οι απόκρυφες ιστορίες και τα θαύματα που αγγίζουν τα όρια του μύθου. Λεγόταν ότι έπνιγε ή ξεσήκωνε τους ανέμους, ότι θεράπευε τις ασθένειες και τα γηρατειά και ότι επανέφερε νεκρούς στη ζωή. Κάθε φορά που έμπαινε στις πόλεις, οι άνθρωποι μαζεύονταν γύρω του και ζητούσαν τη βοήθειά του, και γενικά τον τιμούσαν σαν θεό.
Πολλές μυθοπλασίες που αναφέρονται στη ζωή του πηγάζουν από την πίστη του στη μετενσάρκωση. Όπως ο ίδιος δήλωνε, είχε υπάρξει δαίμονας, που έπεσε σε βαρύ αμάρτημα, έχασε τη θεϊκή φύση του και πέρασε διαδοχικά από σώμα ζώου, φυτού και ανθρώπου, περιπλανώμενος στο σύμπαν, προορισμένος όμως, αργά ή γρήγορα να ξαναπάρει την αρχική του φύση.
Έγραψε πολλά βιβλία, αρκετά από τα οποία ήταν έμμετρα (το Περί φύσεως με 2.000 στίχους, τα Περσικά, έμμετρη εξιστόρηση εκστρατείας του Ξέρξη), ή και καθαρά ποιητικά έργα (Καθαρμοί, Προοίμιον εις Απόλλωνα. ) θεατρικά (Τραγωδίαι), δοκίμια (Ποιητικοί λόγοι, Ιατρικός λόγος, Περί φύσεως των όντων) και επιγράμματα, από τα οποία διασώθηκαν ελάχιστα αποσπάσματα. Από όσα έφτασαν ώς εμάς συμπεραίνουμε πως ο συγγραφέας τους, εκτός από τη γενική φυσική, είχε και ειδικότερες γνώσεις φυσιογνωσίας και ιατρικής, ιδιαίτερα φυσιολογίας, ανατομίας και εμβρυολογίας, και ότι έτσι συνδεόταν με τη μεγάλη ιατρική παράδοση της Κάτω Ιταλίας.
Στον πνευματικό χώρο όπου δέσποζαν οι ορφικές και οι πυθαγόρειες διδασκαλίες, ο Εμπεδοκλής δημιούργησε τη δική του φιλοσοφία, στο περιεχόμενο της οποίας είναι φανερή η επίδραση των παραπάνω ιδεών, καθώς και της σκέψης των προγενέστερών του φιλοσόφων, ιδίως του Παρμενίδη, στου οποίου τη γλώσσα και τη σκέψη οφείλει πολλά. Είναι πολύ πιθανόν να αληθεύει η μαρτυρία ότι ο Εμπεδοκλής είχε μαθητεύσει κοντά σε Πυθαγόρειους, άποψη που ενισχύεται από την επίδραση στον τρόπο γραφής του.
Αναμφίβολα, κύρια φιλοδοξία του Εμπεδοκλή δεν ήταν η αναγνώριση της φιλολογικής ευφυΐας του, όσο η παραδοχή από τους ανθρώπους, ως πραγματικής αποστολής του, της προφητικής και ιερατικής, της μυστηριακής, με μια λέξη, δράσης του. Φαίνεται ότι η ζωή του ήταν πολύ σεμνή και μεγαλοπρεπής, ότι του απονέμονταν ύψιστες τιμές και κυκλοφορούσαν διαδόσεις για εξαίρετες πράξεις του και θαύματα.
Ο Εμπεδοκλής είναι σύμβολο της ποιητικής μεγαλοφυΐας. Το άριστο κριτήριο της αξίας του Εμπεδοκλή είναι τα έργα του. Ο Εμπεδοκλής ήταν ο τρίτος και τελευταίος φιλόσοφος, μετά τον Ξενοφάνη και τον Παρμενίδη, που επέλεξε να αναπτύξει τη φιλοσοφία του σε στίχους, και μάλιστα σε δακτυλικό εξάμετρο. Με δεδομένη αυτή την επιλογή του μέτρου, σε συνδυασμό με την ιωνική διάλεκτο στην οποία είναι γραμμένοι οι στίχοι, γίνεται κιόλας αισθητό ένα από τα πιο βασικά χαρακτηριστικά της ποίησής του: η σχέση με το έπος, και συγκεκριμένα με τον Όμηρο και τον Ησίοδο, των οποίων η μελέτη επηρέασε βαθιά το έργο του.
Ο Εμπεδοκλής ήταν επίσης δεινός χειριστής της γλώσσας, πραγματικός γλωσσοπλάστης, αφού προσφέρει μεγάλο αριθμό λέξεων, που συναντούμε για πρώτη ή και για μοναδική φορά στην αρχαία γραμματεία («άπαξ ειρημένα»). Η γλωσσική έκφρασή του είναι χυμώδης, προδίδει ορμητικό ενθουσιασμό και φαντασία, παράγει πλήθος νέων ποιητικών εικόνων και σχημάτων.
Στο έργο του Περί φύσεως προσπαθεί να δώσει τις βασικές αρχές της φυσικής φιλοσοφίας του, όπως αυτή εκφράζεται μέσα από την εναλλασσόμενη κυριαρχία της έλξης (φιλότης) και της άπωσης (νείκος) πάνω στα τέσσερα ριζώματα (το πυρ, τον αέρα, το ύδωρ και τη γη). Η ουσία του σύμπαντος συνίσταται, κατά τον Εμπεδοκλή, σε μια αέναη μεταλλαγή καταστάσεων από το ένα στα πολλά και από τα πολλά στο ένα. Αξιόλογη είναι η θεωρία για τη γένεση των οργανικών όντων, η οποία αναπτύσσεται με βασικό άξονα την εξέλιξη, γεγονός που έκανε τον αρχαίο στοχαστή να θεωρείται πρόδρομος του Δαρβίνου. Η εξελικτική αυτή θεωρία αποτελείται από τέσσερα στάδια: Στο πρώτο η γη γεννά τα οργανικά μέλη του σώματος των ζώων διαχωρισμένα, στο δεύτερο τα μεμονωμένα οργανικά μέλη συνενώνονται σε τερατώδεις μορφές, στο τρίτο οι τερατώδεις μορφές που προέκυψαν δεν κατορθώνουν να επιβιώσουν και παραχωρούν τη θέση τους σε νέους τύπους ζώων, που έχουν την ικανότητα να συνεχίσουν τη ζωή τους, στο τέταρτο στάδιο γεννιούνται τα οργανικά όντα, όχι από τη γη αλλά το ένα από το άλλο.
Όπως συμβαίνει και με τον Παρμενίδη, ο Εμπεδοκλής απορρίπτει τη γένεση και τη φθορά. Στη θέση τους χρησιμοποιεί δύο άλλες έννοιες, που τις περιγράφει ως μείξη (γέννηση) και χωρισμό (φθορά) «αγέννητων στοιχείων». Κρατά το μηδέν έξω από τον κόσμο και ανάγει την γέννηση του κόσμου και τις κοσμικές μεταβολές σε τέσσερις θεμελιώδεις υποστάσεις, ισοδύναμες μεταξύ τους. Αυτές οι υποστάσεις, όμοιες με το εόν του Παρμενίδη, είναι τα ριζώματα, δηλαδή η γη, το νερό, η φωτιά και ο αέρας. Τα ριζώματα, αντίθετα από τα φυσικά στοιχεία, δεν χάνουν την ταυτότητά τους. Οι δε μεταξύ τους σχέσεις διέπονται από την επίδραση δύο κοσμικών δυνάμεων, που είναι επίσης αγέννητες και αιώνιες, της φιλότητας (έλξη και συνένωση) και του νείκους (άπωση, διάσπαση και διάλυση).
Το άλλο μεγάλο έργο του ακραγαντίνου σοφού, που σώθηκε ώς τις μέρες μας, έχει τίτλο Καθαρμοί (3.000 στίχοι), και περιέχει τη διδασκαλία μιας ξενόφερτης θρησκευτικής αίρεσης, σύμφωνα με την οποία αυτό που λέμε ψυχή του ανθρώπου είναι μια αυθυπόστατη οντότητα, ανεξάρτητη από το σώμα, και εξαιτίας κάποιου παραπτώματός της έχει καταδικαστεί να κατοικεί μέσα σε σώματα φυτών, ζώων ή ανθρώπων ώς την τελική κάθαρσή της για την οριστική επιστροφή στον τόπο της καταγωγής της. Οι Καθαρμοί είναι μια έκθεση της αποκρυφιστικής ζωής του Εμπεδοκλή ως μύστη.
Από τα δύο αυτά μεγάλα έργα του Εμπεδοκλή οι διασωθέντες στίχοι στο έργο Περί φύσεως είναι περίπου 350 και στο έργο Καθαρμοί λίγο περισσότεροι από 100. Έφτασε δηλαδή ώς εμάς μόνο το 16-20% του συνολικού του έργου, ποσοστό πάντως πολύ μεγαλύτερο από άλλων προσωκρατικών φιλοσόφων.
* Σύμφωνα με άλλους συγγραφείς του Αρχινόμου, μολονότι κάποιοι σχολιαστές αναφέρουν πως δεν πρόκειται για πατρώνυμο αλλά για αξίωμα του Μέτωνος
Γς said
Καλημερα
Μάγκνα Γκρέτσια [Μάνια] πάλι.
Ταράντο η πόλη, ο Τάραντας. Αλλά κι η ταραντούλα ο χορός κι η αράχνη.
Κροτόνε η πόλη, ο Κρώτονας. Αλλά κι ο κρότωνας το τσιμπούρι.
Α, Κοτρόνε τον λέγανε οι Ιταλοί μέχρι το 1930. Δεν θύμιζε όμως κανένα έντομο…
Γιάννης Ιατρού said
Καλημέρα,
περιεκτικό το σημερινό άρθρο. Καλογραμμένο.
Αλλά τι άλλο βλέπουμε στους βίους των ΑΗΠ; Από την αρχαιότητα υπήρξε μετανάστευση/φυγή νέων και διαρροή επιστημονικού προσωπικού στο εξωτερικό. 🙂
Γς said
1:
>Ταράντο
Κατεβαίναμε πρωί πρωί από Ταράντο σε Ρέτζιο ντι Καλάμπρια, όλη τη σόλα της Ιταλικής μπότας, κι επειδή με είχε ταράξει ο ήλιος από την Ελλάδα αριστερά μου, χρησιμοποίησα το μαραφέτι για τον ήλιο, που το είχα γυρίσει προς το αριστερό παράθυρο.
Όταν όμως ανέβηκε ο ήλιος και πήγα να το βάλω πάλι στη θέση του, δεν καθόταν με τίποτε. Επεφτε και δεν μπορούσα να οδηγήσω. Είχε λασκάρει η βίδα του, και δεν είχα και κατσαβίδι.
Κι εκεί περίπου στον Κρώτονα σταματάω και μπαίνω σ ένα μαγαζί.
–Ντου γιου χεβ ε σκρου ντράιβερ;
Δεν με καταλάβαινε. Στα γαλλικά, τίποτα.
Και δεν ήξερα πως λέγεται το κατσαβίδι στα ιταλικά.
–Βορέι κελκόζα ντα φάρε κουέστο μόντο.
Και έστριβα τα δάχτυλά μου σα να βιδώνω. Τίποτα. Παίρνω ένα μαχαίρι που είχε και κάνω ότι ζεβιδώνω μια βίδα. Τα ίδια.
–Αντιάμο αλά μάκινα.
Του δείχνω τη βίδα που έχει λασκάρει.
Και τι μου λέει;
-Α, Κατσαβίτε! (που εγώ το άκουσα «Κατσαβίδι»)
-Νο (ρε πούστη μου). Λέω εγώ.
-Σι, κατσαβίτε. (κατσαβίδι, εγώ)
Και συμπληρώνει με την χαρακτηριστική ιταλική κίνηση των δυο χεριών:
-Καπίς;
Γς said
2:
Ναι ήταν διαρροή εγκεφάλων,
cerebrum exhauriunt, μετά
fuga di cervelli πιο μετά
spiral architect 🇰🇵 said
@2: Δεν κάθισαν να πολεμήσουν τους Πέρσες και μετά να επενδύσουν στα ορυχεία αργύρου του Λαυρίου, οι μπροδότες! 😀
ΓιώργοςΜ said
Καλημέρα!
2 Πέρα από το χιούμορ, τα ανήσυχα μυαλά σπανίως ικανοποιούνται από την ακινησία. «Όποιος γυρίζει μυρίζει, όποιος κάθεται βρωμάει», λένε στο χωριό μου.
Έχει ειπωθεί για τους μετανάστες/πρόσφυγες κάθε είδους: Πρώτα φεύγουν οι πιο ανήσυχοι και δραστήριοι, που διαβλέπουν είτε την ευκαιρία είτε τον κίνδυνο.
sarant said
Kαλημέρα, ευχαριστώ πολύ για τα πρώτα σχόλια!
2-5 Είναι βέβαια ένα θέμα αν το να πας στη Μεγάλη Ελλάδα ήταν ξενιτεμός μεγαλύτερος από το να πας στην Αθήνα.
Από την άλλη, και όλες οι αυλές των βασιλιάδων της Ανατολής είχαν Έλληνες γιατρούς.
Γς said
Εκοβαν κι αποδείξεις;
Είχαν POSq
Γς said
POS;
Avonidas said
Καλημέρα.
Γιατί όχι μόνο είχε πολλές μαθήτριες, αλλά τις ανέδειξε σε προσωπικότητες σεβαστές στο Πανελλήνιο.
Και εκτός που τις ανέδειξε, μήπως τις έκανε και τίποτα άλλο, όπως φερ’ ειπείν ο, χμ, όχι, δε θα μιλήσω 😏
Corto said
Χαίρετε!
Άρθρο πολύ πλούσιο σε γνώσεις για τους προσωκρατικούς φιλοσόφους.
«Εμπεδοκλής Μέτωνος Ακραγαντίνος: … Αξίζει να αναφερθεί ότι είναι ο μόνος γηγενής πολίτης μιας δωρικής πολιτείας, που έπαιξε μεγάλο ρόλο στην ιστορία της φιλοσοφίας.»
Νομίζω ότι θα έπρεπε να προσμετρήσουμε και τον Αρχύτα τον Ταραντίνο (ο Τάρας ήταν αποικία των Σπαρτιατών).
Avonidas said
Για την απαγόρευση των κουκιών οι εξηγήσεις που έδινε είναι μάλλον απλοϊκές [Η εντολή του Πυθαγόρα να μην τρώνε κουκιά (κυάμων ἀπέχεσθαι), στηριζόταν αφενός μεν στην ομοιότητα που παρουσιάζουν τα κουκιά, όταν απαλλαγούν από τη φλούδα τους, με τα ανδρικά γεννητικά όργανα, αφετέρου δε στον μύθο πως όταν εκτεθούν νύχτα στο φως της πανσελήνου μετατρέπονται … σε αίμα!]
Εγώ αντίθετα έχω διαβάσει πως το επιχείρημα ήταν πως δεν κανει να τρως κουκιά γιατί όταν τα τρως αεριζεσαι, και μιας και την ψυχή τη συσχετιζαν με την αναπνοή το θεωρούσαν απόδειξη πως έφαγες κάτι έμψυχο!
Αν αυτό σας φαίνεται παρατραβηγμενο, μην ανησυχείτε, κι οι υπόλοιποι συλλογισμοί των πυθαγορειων τα ιδια χάλια είχαν 😋
gpointofview said
# 20
Αβονίδα στις σχέσεις μαθητριών με τους δασκάλους των ο καθένας συνεισφέρει ό,τι μπορεί…
gpointofview said
# 13 —> # 10
(απ’ όσα βλέπεις να πιστεύεις τα μισά ! )
gpointofview said
Καλημέρα δεν είπα…
Εκπληκτικά χρήσιμες γνώσεις προσφέρι απλόχερα το βιβλίο. Ευχαριστώ.
Corto said
Φιλολογική ερώτηση:
Είναι εξίσου αποδεκτοί οι τύποι Ακραγαντίνος και Ακραγαντινός;
Είναι εντυπωσιακό ότι για τους καταγόμενους από τον Τάραντα το επίθετο τονίζεται στην παραλήγουσα (Ταραντίνος), όπως και στα ιταλικά, π.χ. στον ομώνυμο σκηνοθέτη. Έχει διαπιστωθεί επιστημονικώς κάποια γλωσσική αλληλεπίδραση ελληνικών και ιταλικών (ή λατινικών) στο θέμα του τονισμού;
Νέο Kid said
Πυθαγόρας! Τι να πει και να γράψει κανείς…. χρειάζονται χώρος και χρόνος που δεν έχουμε. Σε μαθηματικώς τεχνικό επίπεδο θα έλεγα μόνο Ρίζα 2.
Μεταφέρω ένα απόσπασμα του Ισπανού μαθηματικού & συγγραφέα Claudi Alsina, σχετικά με την κληρονομιά του πυθαγορισμού, που ίσως ενδιαφέρει κάποιους. (και επιδέχεται κριτικής και σχολιασμού)
«Μετά το θάνατο του Πυθαγόρα, η κοινότητα παρέμεινε ενεργη. Η σύζυγός του Θεανώ και οι κόρες του συνέβαλαν στη διατήρηση των παραδόσεων που είχε εδραιώσει. Πιστεύεται πως η Θεανώ δούλεψε πάνω στη Χρυσή Τομή, αλλά οι έρευνές της δεν διασώζονται.
Η σχολή χωρίστηκε σε δύο ομάδες. Σε εκείνους που ήταν αφοσιωμένοι στον μυστικισμό και στις τελετουργίες, τους ΑΚΟΥΣΜΑΤΙΚΟΥΣ («αυτούς που ακούνε») και σ’εκείνους που ενδιαφέρονταν για την εβάθυνση στη γνώση του αριθμού, τους ΜΑΘΗΜΑΤΙΚΟΥΣ («αυτούς που ενδιαφέρονται για τη μάθηση»).
Οι πυθαγόρειοι ήταν αντίθετοι με την αριστοκρατία, αλλά κατέληξαν να συνιστούν ενός είδους αριστοκρατία και να επεμβαίνουν στα πολιτικά ζητήματα Ετσι, ξέσπασε βίαιη λαϊκή εξέγερση στον Κρότωνα. Οι πυθαγόριειοι καταδιώχθηκαν και πολλοί σφαγιάστηκαν.
Οι κοινότητες διασπάστηκαν. Οι μαθηματικοί κατέφυγαν στον Τάραντα και οι ακουσματικοί έγιναν περιπλανώμενοι μυστικοί.
Η διασπορά τόσων μαθηματικά και φιλοσοφικά προικισμένων ανθρώπων συνέβαλε στη δημιουργία ενός κέντρου πνευματικής δραστηριότητας άνευ προηγουμένου, της πιο σημαντικής σχολής όλων των εποχών, της Ακαδημίας Πλάτωνος.
Σήμανε το τέλος της κοινότητας αλλά και την αρχή της αθανασίας του πυθαγορισμού.
Τα οράματα του Πυθαγόρα συνέχιζαν να ασκούν επιρροή όχι μόνο στην ελληνική φιλοσοφία αλλά και στο σύνολο της δυτικής σκέψης. Οι θεωρίες του Πλάτωνα για την ψυχή, η εξήγησή του για τη δημιουργία, οι ιδιότητες των πραγμάτων ως αγνές ιδέες, είναι απευθείας δάνειο από τον πυθαγορισμό. Η πυθαγόρεια αριθμολογία επηρεασε και τον χριστιανικό μυστικισμό. Για τους οπαδούς του, ο Γαλιλαίος υπήρξε πυθαγόρειος. Είναι διάσημη πλέον η φράση του «το βιβλίο της φύσης είναι γραμμένο στη γλώσσα των μαθηματικών». Ο Κοπέρνικος και ο Leibnitz διαβεβαίωναν πως ανήκαν στην ίδια παράδοση, ο Νεύτων αφιέρωσε μεγάλο μέρος της ζωή του στην αλχημεία και σε άλλα παρόμοια, αλλόκοτα εγχειρηματα υπό την επιρροή του πυθαγορείου μυστικού Jakob Boehme.
Ο αριθμητικός μυστικισμός έχει επηρεάσει αμετρητους συγγραφείς, καλλιτεχνες και στοχαστές στο πέρασμα των αιώνων, όπως και τις σχέσεις ανάμεσα στα μαθηματικά και τη μουσική. Στην Αναγέννηση, κάποιοι καθεδρικοί ναοί σχεδιάστηκαν σύμφωνα με τις μουσικές αναλογίες 2:1 ,3:2,και 4:3. Σε γνωστή εικονογράφηση του έργου Anatomiae Amphitheatrum, που εξέδωσε ο ερμητικός φιλόσοφος Robert Fludd το 1623, φαίνεται το χέρι του Θεού να κουρδίζει ένα ουράνιο μονόχορδο.
Η ιδέα της «μουσικής των σφαιρών» ενε΄πνευσε πολλούς επιστήμονες, συμπεριλαμβανομένων και των πιο σπουδαίων και ρηξικέλευθων, όπως τον Kepler. Μυστικός ώς το κόκκαλο, ο Kepler πέρασε (κάποιοι μπορεί να ισχυριστούν ότι σπατάλησε) τριάντα χρόνια απ τη ζωή του σε μια προσπάθεια να ανακαλύψει τους νόμους της πλανητικής κίνησης στη μουσική αρμονία. Πίστευε πως κάθε πλανήτης είχε μια συγκεκριμένη μελωδία ανάλογη με την απόσταση του από τον ήλιο. Όσο πιο κοντά βρισκόταν σ’αυτόν, τόσο πιο ψηλές ήταν οι νότες.
Η πνευματική επιρροή του Πυθαγόρα τόσο στην αρχαία όσο και στη σύγχρονη εποχή τον καθιστούν έναν από τους σημαντικότερους ανθρώπους που έζησαν ποτέ, και επειδή η σκέψη του εμπεριείχε αυθεντική γνώση και επειδή η γνώση αυτή ήταν απόλυτα αμφισβητήσιμη.
Τα μαθηματικά ως συμπερασματικό-αποδεικτικό επιχείρημα έχουν σ’αυτόν την αφετηρία τους αλλά σ’αυτόν συνδυάζονται επίσης και σε μια παράξενη μορφή μυστικισμού. Η αξίωση πως η μαθηματική εξίσωση ανταποκρίνεται σε αληθινό φαινόμενο είναι έκφραση αριθμητικού πυθαγορισμού.
Ας θυμηθούμε, για παράδειγμα, τον Άλμπερτ Άινστάιν, σύγχρονο επιστήμονα αδιαφιλονίκητης σπυδαιότητας. Ο φυσικός που έφερε την επανάσταση τον εικοστό αιώνα πέρασε μεγάλος μέρος της ζωής του υπνωτισμένος από αυτή την ιδιαίτερη μορφή αριθμητικού πυθαγορισμού ώσπου συνέλαβε τον θρυλικό τύπο της σχετικότητας E=mc^2.
Οι αντανακλάσεις της πυθαγόρειας φιλοσοφίας συνεχίζουν να μας θαμπώνουν ακόμη και σήμερα. «
Avonidas said
το γεγονός πως δυο πολύ κοντινοί του άνθρωποι, η γυναίκα του η Θεανώ και η κόρη τους η Δαμώ, τον θαύμαζαν και τον υποστήριζαν, από μόνο του επιβεβαιώνει την αξία του
Και γαμώ τα αντικειμενικά δείγματα, μιλάμε! 😀
ΓιώργοςΜ said
…τον Αρχύτα τον Ταραντίνο…
Με τον Κουέντιν καμμία σχέση, ε; 😛
Corto said
19:
Εξ απόψεως ονόματος, μάλλον απόλυτη σχέση. Ο σκηνοθέτης είναι ιταλικής καταγωγής.
sarant said
Eυχαριστώ για τα νεότερα!
16 Κρατάω την ερώτηση, θα το αναζητήσω.
ΓιώργοςΜ said
20 Διασταλτικά, μπορει να θεωρηθεί και φιλόσοφος, η ωμότητα των ταινιών του δωρική, οπότε μπορει να προσμετρηθεί στην κατηγορία, σωστά! Όσο για τις ελληνικές ρίζες, ε, δε νομίζω πως υπάρχει αμφιβολία πως όλοι οι κάτοικοι του Τάραντα είναι Έλληνες, απλώς μερικοί δεν το ξέρουν 😀
(Συνειρμικά, θυμήθηκα και το «Νονό», που πήρε το όνομα του χωριού του).
Νέο Kid said
21. Η συντριπτική πλειοψηφία των Ισπανικών λέξεων τονίζονται στην παραλήγουσα, και το μεγαλύτερο ποσοστό των Ιταλικών λέξεων.
Avonidas said
Αξιόλογη είναι η θεωρία για τη γένεση των οργανικών όντων, η οποία αναπτύσσεται με βασικό άξονα την εξέλιξη, γεγονός που έκανε τον αρχαίο στοχαστή να θεωρείται πρόδρομος του Δαρβίνου. Η εξελικτική αυτή θεωρία αποτελείται από τέσσερα στάδια: Στο πρώτο η γη γεννά τα οργανικά μέλη του σώματος των ζώων διαχωρισμένα, στο δεύτερο τα μεμονωμένα οργανικά μέλη συνενώνονται σε τερατώδεις μορφές, στο τρίτο οι τερατώδεις μορφές που προέκυψαν δεν κατορθώνουν να επιβιώσουν και παραχωρούν τη θέση τους σε νέους τύπους ζώων, που έχουν την ικανότητα να συνεχίσουν τη ζωή τους, στο τέταρτο στάδιο γεννιούνται τα οργανικά όντα, όχι από τη γη αλλά το ένα από το άλλο.
Συγγνώμη, αλλά αυτό αντικειμενικά δεν έχει την παραμικρή σχέση με τη θεωρία του Δαρβίνου, πέρα από μια επιφανειακή ομοιότητα. Λείπει εντελώς η κεντρική ιδέα της συσσωρευτικής επιλογής. Αυτό που έχουμε είναι ένας αλλόκοτος συνδυασμός αβιογένεσης, που θυμίζει τις υλοζωιστικές ιδέες των Ιώνων φιλοσόφων, με κάποιο είδος αλματισμού όπου οι τερατογενέσεις απλώς αντικαθίστανται με φυσιολογικά ζώα.
Ο λόγος που το αναφέρω είναι ότι πράγματι βρίσκουμε σε μεταγενέστερους φιλοσόφους της κλασικής και της ελληνιστικής εποχής ιδέες που μπορούν να θεωρηθούν πρόδρομοι της θεωρίας της φυσικής επιλογής (ο Δαρβίνος δεν ήταν ο πρώτος που εισήγαγε την εξέλιξη, στη σύγχρονη εποχή, αλλά ο πρώτος που διατύπωσε μια βιώσιμη θεωρία για το πώς λειτουργεί η εξέλιξη). Ο Αριστοτέλης, για παράδειγμα, διατυπώνει (και απορρίπτει) την ιδέα της επιβίωσης των καλύτερα προσαρμοσμένων όντων, και είναι πιθανό οι μαθητές του να την ανέπτυξαν παραπέρα.
Μαρία said
16, 21
http://www.greek-language.gr/greekLang/ancient_greek/tools/structure/page_128.html
Avonidas said
#17. Πίστευε πως κάθε πλανήτης είχε μια συγκεκριμένη μελωδία ανάλογη με την απόσταση του από τον ήλιο. Όσο πιο κοντά βρισκόταν σ’αυτόν, τόσο πιο ψηλές ήταν οι νότες.
Δηλαδή, ο Πλούτωνας είναι βαρύτονος; 😉
Avonidas said
Ας θυμηθούμε, για παράδειγμα, τον Άλμπερτ Άινστάιν, σύγχρονο επιστήμονα αδιαφιλονίκητης σπυδαιότητας. Ο φυσικός που έφερε την επανάσταση τον εικοστό αιώνα πέρασε μεγάλος μέρος της ζωής του υπνωτισμένος από αυτή την ιδιαίτερη μορφή αριθμητικού πυθαγορισμού ώσπου συνέλαβε τον θρυλικό τύπο της σχετικότητας E=mc^2.
Ε?!
Τρίχες κατσαρές, και να με συγχωρείτε
Corto said
21 (Sarant): Ευχαριστώ εκ των προτέρων!
22 (ΓιώργοςΜ): Και όπως θα ξέρεις, και ο Αλ Πατσίνο είναι όντως καταγόμενος από το χωριό Κορλεόνε.
spiral architect 🇰🇵 said
Διαβάστε το:
Για τους Πυθαγορείους, η άμεση και ακριβής σχέση μαθηματικών, μουσικής και ευχάριστου ψυχικού συναισθήματος αποτελούσε τη μέγιστη απόδειξη ότι η αλήθεια, στο ύψιστο επίπεδό της, εκφράζεται με μαθηματικές σχέσεις.
Στα «εργαστήρια» (στα πρότυπα Δημοτικά δηλαδή) του παιδαγωγικού του ΕΚΠΑ, υπάρχει μάθημα που συνδυάζει τα μαθηματικά με τη μουσική.
Corto said
25:
Από το άρθρο της Πύλης για την Ελληνική γλώσσα:
«Τα εθνικά (και μαζί τα δηλωτικά υπηκοότητας επίθετα) σε -ῖνος όπως για παράδειγμα σχηματίζονται από κατωιταλικές και σικελικές ελληνικές πόλεις, έχουν λατινική προέλευση: Ἀκραγαντῖνος, Ταραντῖνος από τα Ἀκραγαντ-, Ταραντ- »
Αν ισχύει το παραπάνω, θα είχε ενδιαφέρον να μαθαίναμε πότε εμφανίζονται αυτοί οι τύποι (πριν την ρωμαϊκή κατάκτηση της Μεγάλης Ελλάδας ή μετά).
Γιώργος said
σχόλιο 18: είναι κοντινά πρόσωπα του Τίμωνα του Αθηναίου (αυτό τουλάχιστον καταλαβαίνω απ΄οτο κείμενο)
Γιώργος said
σχόλιο 17: το γεγονός ότι η υποτείνουσα ενός ορθογώνιου ισοσκελούς τριγώνου (με τις ίσες πλευρές ίσες με τη μονάδα) δεν μπορεί να εκφραστεί ως πηλίκο ακεραίων αποτέλεσε μεγάλο πλήγμα στην φιλοσοφία των Πυθαγόριων.
cronopiusa said
Ριβαλντίνιο said
Ήταν κεντρική αντίληψη των Πυθαγορείων ότι η ουσία κάθε όντος μπορεί να αναχθεί σε φυσικούς αριθμούς. Ο νεοπυθαγόρειος Φιλόλαος γύρω στα 450 π.Χ., έγραφε:
«Πραγματικά το καθετί που γνωρίζουμε έχει έναν αριθμό (δηλαδή φυσικό). Αλλιώς θα ήταν αδύνατο να το γνωρίσουμε και να το καταλάβουμε με τη λογική. Το ένα είναι η αρχή του παντός».
Η ανακάλυψη λοιπόν ότι υπάρχουν μεγέθη και μάλιστα απλά, όπως η υποτείνουσα τετραγώνου, τα οποία δεν μπορούν να εκφραστούν στα πλαίσια των φυσικών αριθμών, θεωρήθηκε αληθινή συμφορά για την πυθαγόρεια φιλοσοφία. Χαρακτηριστικοί είναι οι θρύλοι που περιβάλλουν το γεγονός αυτό. Κατά έναν από αυτούς, η ανακάλυψη της ύπαρξης των άρρητων αριθμών έγινε από τον πυθαγόρειο Ίπασσο, όταν αυτός και άλλοι Πυθαγόρειοι ταξίδευαν με πλοίο. Η αντίδραση των Πυθαγορείων ήταν να πνίξουν τον Ίπασσο και να συμφωνήσουν μεταξύ τους να μη διαδοθεί η ανακάλυψη προς τα έξω.
Η υπέρβαση των «δυσκολιών» που φέρνει στα Μαθηματικά η ύπαρξη άρρητων αριθμών, κατέστη δυνατή από τον Εύδοξο (360 π.Χ.) με την ιδιοφυή «θεωρία των Λόγων». Η απόδειξη για το ότι ένας συγκεκριμένος αριθμός είναι άρρητος είναι ένα πρόβλημα που απαιτεί πολλές φορές πολύπλοκούς συλλογισμούς.
__________________________________
Μεταξύ των παραδόσεων που αφηγείται ο Διογένης Λαέρτιος για τον θάνατο του Εμπεδοκλή (Βίοι Φιλοσόφων, Η΄ 69-72), είναι ότι αναλήφθηκε στον ουρανό αποθεωθείς, καθώς και ότι ρίχτηκε στον κρατήρα της Αίτνας.
Γιάννης Ιατρού said
6: Ναι, ναι. Κι έχουμε εδώ στο μπλογκ πολλούς, αρκετοί μάλιστα επέστρεψαν (παλιοσυνταξιούχοι πλέον 🙂 )
15: Γιώργο, συμφωνώ απολύτως.
25: Α μπράβο, απίκο είσαι ρε παιδί μου!
Ένα ενδιαφέρον (μεταξύ πολλών, κυρίως ξενόγλωσσων, βλ. π.χ. το κλασσικό έργο του John Burnet, Greek Philosophy Part 1, Thales to Plato, 1928 σε επανεκδόσεις) βιβλίο για τους φιλοσόφους στο σημερινό άρθρο, είναι το «Οι προσωκρατικοί φιλόσοφοι» των Kirk, Raven και Schofield, 2001, από το Μορφωτικό Ίδρυμα Εθνικής Τραπέζης (Μ.Ι.Ε.Τ.), σε μετάφραση του Δημ. Κούρτοβικ. Συνδέσμους στη Βιβλιοθήκη της Αλεξάνδρειας δεν βάζω, είναι εύκολη η εύρεσή τους …, τους τίτλους σας τους έγραψα 🙂
Νέο Kid said
27. Πριν γράψεις την -ασφαλώς από μένα αναμενόμενη! άργησες κιόλας…- απορριπτική εξυπνάδα σου ,διάβασε χωρίς προκαταλήψεις το κείμενο του Alsina, που λέει ότι «Η αξίωση πως η μαθηματική εξίσωση ανταποκρίνεται σε αληθινό φαινόμενο είναι έκφραση αριθμητικού πυθαγορισμού.»
Ο άνθρωπος λέει η «αξίωση» (που μπορεί να είναι και ολόσωστη ,στην περίπτωση του Αινστάιν ας πούμε, ή που μπορεί να αποδειχθεί και λανθασμένη, σε πλείστες άλλες περιπτώσεις).
Αμφισβητείς δηλαδή, στα πλαίσια που έχεις κάποια ιδέα περί ιστορίας της επιστήμης…, ότι το «να βρούμε ΤΟΝ ΤΥΠΟ…!» ήταν και είναι κυρίαρχη επιδίωξη πολλών επιστημόνων, σαν έκφραση αυτού που ο συγγραφέας δεν λέει ρητά, αλλά εγώ θα το χαρακτήριζα «υποσυνείδητο πυθαγορισμό»;
ΚΑΒ said
Δεν έπρεπε να τρώνε (κρέας, αυγά και) κουκιά.
κυάμων απέχεσθαι (αλληγορία):μη πράττειν τα πολιτικά.Οι κύαμοι χρησιμοποιούνταν για την κλήρωση των αρχόντων.
Δύτης των νιπτήρων said
Ξαναλέγαμε για τα κουκιά και τον Πυθαγόρα, και την άποψη πως τάχα εννοούσε την ενασχόληση με τα κουκιά της πολιτικής: https://sarantakos.wordpress.com/2016/11/26/meze-247/#comment-397520
Avonidas said
#36. Όχι, αμφισβητώ ότι ο Αϊνστάιν «συνέλαβε τον θρυλικό τύπο της σχετικότητας E=mc^2», διότι αυτός δεν είναι ο τύπος «της σχετικότητας», είναι ο τύπος της ισοδυναμίας μάζας-ενέργειας, και είναι αυτό που γνωρίζουν για τη σχετικότητα όσοι είναι άσχετοι από σχετικότητα.
Αν είχες μπει στον κόπο να διαβάσεις τον Αϊνστάιν αντί για τον Alsina (και πρόκειται για κλασική εργασία), θα ήξερες πώς κατέληξε στους τύπους της σχετικότητας, μέσα από νοητικά πειράματα για την κίνηση ακτίνων φωτός από την οπτική γωνία διαφορετικών παρατηρητών, και πως ο γνωστός τύπος που γνωρίζουν ακόμα και τα μπλουζάκια είναι μια έμμεση συνέπεια αυτών των μετασχηματισμών.
Ο Αϊνστάιν ήταν χαρακτηριστικό παράδειγμα φυσικού που σκεφτόταν κυρίως γεωμετρικά και με νοητικές εικόνες. Να πεις, για παράδειγμα, για τον Dirac, εκεί μάλιστα υπάρχει κάποια συνάφεια με τον αριθμητικό πυθαγορισμό.
ΚΑΒ said
38.Σωστά, και για την αναφορά του πυθαγόρειου λόγου στο διήγημα του Παπαδιαμάντη.
Δημήτρης Μαρτῖνος said
Γειά σας κι ἀπὸ μένα.
Πολὺ ἐνδιαφέρον καὶ τὸ σημερινό.
Σχετικὰ μὲ τὴν προτροπὴ τοῦ Πυθαγόρα γιὰ ἀποχὴ ἀποχὴ ἀπὸ τὰ κουκιὰ θὰ διατυπώσω μιὰν «ἀφελῆ» σκέψη.
Μήπως ἦταν γιὰ λόγους ὑγείας ἐπειδὴ εἶχε παρατηρήσει τὶς παρενέργειες σὲ ὁρισμένα ἄτομα (κυαμισμὸς ἤ ἔλλειψη G6PD);
Ὡς γνωστὸν πολλὲς θρησκεῖες ἔχουν ντύσει μὲ θρησκευτικὸ μανδύα τέτοιες ἀπαγορεύσεις τροφῶν ποὺ μπορεῖ νὰ προκαλοῦν βλάβη κάτω ἀπὸ ὁρισμένες κλιματολογικὲς συνθῆκες.
spiral architect 🇰🇵 said
@41: Με πρόλαβες Μαρτίνε! 🙂
Η απαγόρευση βρώσης χοιρινού π.χ. στους άραβες ντύθηκε με το πρόσχημα του βρόμικου ζώου, επειδή είναι όντως επικίνδυνο να τρως παϊδάκια σε θερμοκρασία >40οC.
Πώς λοιπόν θα έπειθε τους αγράμματους νομάδες ένας γραμματισμένος;
Βαλ’το στο κοράνι και άστο να κάθεται. 😉
nikiplos said
Καλησπέρα…
Πιστεύω πως η αδιαμφισβήτητη αξία των αρχαίων φιλοσόφων – που ήταν και λίγο ιερείς, μάντεις, έμποροι κλπ – είναι ότι έθεσαν τις βάσεις για μια αποδεικτική διαδικασία. Τη διαδικασία δηλαδή του να αποδείξει κάποιος τον ισχυρισμό. Για να γίνει αυτό, ο ισχυρισμός πρέπει να είναι φορητός, γενικός οικομενικός βασικός, και ουσιώδης.
Αν αναζήτησαν την αλήθεια, αυτό το έκαναν με μια γνήσια στα μέτρα του δυνατού προσέγγιση, προσπαθώντας να την καθρεπτίσουν σε οτιδήποτε υπήρχε και συνέβαινε στη γή.
Εκ διαμέτρου δηλαδή αντίθετοι με τους εξ’ ανατολής και εξ’ αποκαλύψεως σωτηριολογικούς δογματικούς.
Φυσικά οι δεύτεροι ήταν περισσότερο χρήσιμοι… 🙂
Νέο Kid said
«Αν είχες μπει στον κόπο να διαβάσεις τον Αϊνστάιν αντί για τον Alsina …»
Πρόσεξε λιγάκι! Θα πατήσεις την έπαρσή σου και θα πεδικλωθείς…
Γιάννης Ιατρού said
42: Εδώ που τα λέμε, και το αρνάκι έχει το λίπος του, ε;
cronopiusa said
sarant said
30 Λοιπόν, όχι. Και ο Ηρόδοτος έχει τύπο «Ταραντίνος», και ο Αριστοτέλης, και γενικά όλοι, αν και οι περισσότερες αναφορές είναι από την ελληνιστική εποχή και μετά. Τύπος οξύτονος δεν υπάρχει πρακτικά στην αρχαία γραμματεία.
Δημήτρης Μαρτῖνος said
@45. Γιάννη, σ᾿ αὐτὰ τὰ μέρη ἔχει δημιουργηθεῖ (πιθανῶς ἀπὸ φυσικὴ ἐπιλογὴ) μιὰ ράτσα προβάτων προσαρμοσμένη στὰ γεωγραφικὰ-κλιματολογικὰ δεδομένα τῆς περιοχῆς μὲ τήν ἐλάχιστη βλάστηση. Ἕχουν πολὺ φαρδιές οὐρές, ὅπου συγκεντρώνεται τὸ λίπος τους ὡς ἀπόθεμα γιὰ τὶς δύσκολες ἐποχές· κάτι σάν τὴν καμπούρα τῆς καμήλας. Τὸ σῶμα τους ἔχει ἐλάχιστο λίπος.
Avonidas said
#44. Δεν είναι έπαρση να διορθώσεις ένα λάθος.
Αλλά άμα δε θες να ξεστραβωθείς, με γεια σου με χαρά σου, δε θα κάτσω να σκάσω κιόλας.
Μαρία said
47
Απ’ τον Ηρόδοτο εκτός απ’ τους Ταραντίνους και Ακραγαντίνους να προσθέσουμε και τους Ρηγίνους.
gpointofview said
Μετά τα χθεσινά αποκαλυπτήρια με τις επιταγές δυσκολεύει η επιστροφή Μαρινάκη στα πάτρια. Μέρι κι ο Κούγιας δήλωσε σχετικά «Πάντως, από τις εισαγγελικές διώξεις είναι ζήτημα να γίνεται δεκτό στα δικαστήρια το 10%. Υπάρχουν, βέβαια, κάποια αδικήματα που δε θα τα ξεπεράσει».
Προφανώς μιλάει για την χρηματοδότηση της επιχείρησης.
Αντε τώρα να με πείσεις εμένα πως τυχαία βρέθηκε στο εξωτερικό αυτές τις μέρες.
Κι έλαχε στον Καμμένο να σώσει το γόυτρο της στγκυβέρνησης…https://youtu.be/qNpD1ESa61s
Νέο Kid said
49. Nαι, ναι! Αλίμονο! Μη σκας μεγάλε επιστήμονα, μοναδικέ εμβριθή γνώστη της ειδικής άμα τε και της γενικής σχετικότητος! (άμα τε και της ασχετότητος)
Corto said
47 (Sarant):
Εξαιρετικά ενδιαφέρον! Ευχαριστώ για την διερεύνηση!
Σκέτη εικασία, χωρίς τεκμηρίωση:
Αυθαίρετα αναρωτιέμαι μήπως υπήρχε κάποιο είδος πρώιμης συνδιαμόρφωσης κοινών ελληνικών και λατινικών τύπων, πέραν της συνήθους μορφής δανείων.
Δεν ξέρω επίσης αν πρέπει να αποκλειστεί ένα είδος διγλωσσίας σε κάποιες φυλές π.χ. στους Οινωτρούς.
ΣτοΔγιαλοΧτηνος said
41/42/45 Καλημέρα.
Νταξ, το χοιρινό και το κρασί πέφτουν βαριά στον ντάλα ήλιο της Αραβίας, αλλά πιο πιθανό μου φαίνεται η απαγόρευση ( καλά, δεν ξέρουν τι χάνουν οι άθρωποι 🙂 ) να συνδέεται με τη νομαδικότητα των Αράβων. Το αιγοπρόβατο 🙂 δεν έχει πρόβλημα στις μετακινήσεις, αντίθετα με το αμπέλι και τη Μις Πίγκυ που απαιτούν μόνιμη εγκατάσταση.
Δημήτρης Μαρτῖνος said
@54. Σωστὸ κι αὐτό.
Γιάννης Ιατρού said
54: Μπράβο, καλή υπόθεση! (Ε, τα κτήνη ξέρουν 🙂 )
sarant said
Ρε μη μαλώνετε!
Πέπε said
@1:
> > Ταράντο η πόλη, ο Τάραντας. Αλλά κι η ταραντούλα ο χορός κι η αράχνη.
Ταραντέλα είναι ο χορός.
Ο οποίος ήταν αρχικά θεραπευτικό μέσο κατά του τσιμπήματος της ταραντούλας!
Γιάννης Κουβάτσος said
Παρατηρώντας προσεκτικά τα σχόλια που ξεκινούν καβγά, και έχοντας ιδία πείρα, η αιτία δεν είναι η ουσία του σχολίου και η διαφωνία επ’ αυτής αλλά ο τρόπος διατύπωσης. Αν πεις «διαφωνώ γι’ αυτόν και γι’ αυτόν τον λόγο», δύσκολα θα υπάρξει καβγάς. Αν πεις «τι βλακείες γράφεις, ρε άσχετε», ο καβγάς δεν είναι μόνο δεδομένος αλλά και επιβεβλημένος. Ο κακός τρόπος και η ειρωνεία προκαλούν καβγάδες, όχι η πολιτισμένη διαφωνία.
Γιάννης Κουβάτσος said
Παρατηρώντας προσεκτικά τα σχόλια που ξεκινούν καβγά, και έχοντας ιδία πείρα, η αιτία δεν είναι η ουσία του σχολίου και η διαφωνία επ’ αυτής αλλά ο τρόπος διατύπωσης. Αν πεις «διαφωνώ γι’ αυτόν και γι’ αυτόν τον λόγο», δύσκολα θα υπάρξει καβγάς. Αν πεις «τι βλακείες γράφεις, ρε άσχετε», ο καβγάς δεν είναι μόνο δεδομένος αλλά και επιβεβλημένος. Ο κακός τρόπος και η ειρωνεία προκαλούν καβγάδες, όχι η πολιτισμένη διαφωνία.
ΣΠ said
59
Μου θύμισες την μητέρα μου που θέλοντας να τονίσει την σημασία του τρόπου διατύπωσης έλεγε: Δεν είναι το ίδιο να πεις σε κάποιον «δεν βλέπεις;» ή «στραβός είσαι;».
Avonidas said
#60,61. Πάρα πολύ ωραία όλα αυτά. Επειδή όμως εδώ έχουμε κάποιον που ΔΕΝ θέλει να μάθει, ΔΕΝ ενδιαφέρεται να κάνει συζήτηση και γουστάρει και τον καυγά, η διπλωματία είναι χάσιμο χρόνου.
Γιάννης Κουβάτσος said
61, 62: Δεν κάνω δασκαλίστικες υποδείξεις, προς Θεού, έτσι; Αλλά επειδή έχω εμπλακεί κι εγώ σε καβγάδες και επειδή τον τελευταίο καιρό παίζει μια φαγωμάρα στο ιστολόγιο, είπα κι εγώ την παρόλα μου. 😊
Pedis said
Ποιο Πυθαγόρειο θεώρημα; Την αλφαβήτα μάθαινε …
—
Το πυθαγόρειο θεώρημα δεν αποδείχτηκε (αν δεν κάνω λάθος) από τον Πυθαγόρα (άλλωστε, ήταν γνωστό σαν πρόταση εμπειρικά επιβεβαιωμένη πριν από αυτόν). Η απόδειξη δίνεται στα στοιχεία του Ευκλείδη.
giorgos said
Λοιπόν , θά βάλω ένα κείμενο τό όποίο δέν καταλαβαίνω τί λέει ,όμως πιστεύω ότι έχει κάποια σχέση μέ τό θέμα .
«Πέριξ τής Μεσογείου , καθώς θελήσαμε νά πούμε , θά ήταν κάπως διακινδυνευμένο νά θελήση ν’ άναγνωρίση κανείς «αύτοτελείς πολιτισμούς» .
Σωστό είναι νά λέμε ότι έχομε διάφορες «συνέχειες» ή πολιτιστικές πραγματοποιήσεις (αρχαία Ελλάδα , Βυζάντιο , Ισλάμ , Εύρώπη ) τής ίδιας πολιτιστικής διαδικασίας καί τών αύτών πολιτιστικών έννοιών .
Τελικώς μέσα στά πλαίσια τής παγκόσμιας ίστορίας δέν ξέρομε νά βάλωμε όρια στούς πολιτισμούς , πού άρχίζει κανείς καί πού τελειώνει . Η «ταξινόμηση» τών πολιτισμών έξυπηρετεί μάλλον μεθοδολογικές άνάγκες σπουδής .
Τό Βυζάντιο καί τό Ισλάμ είχαν τόν «διαφορικό λογισμό» .
Αν δέν τόν χρησιμοποίησαν σάν τέτοιον , άν δέν εύρέθηκε στούς χώρους αύτούς ένας Γαλιλλαίος , τούτο άπλώς σημαίνει ότι οί χώροι αύτοί έδωσαν άλλες άπαντήσεις στό πρόβλημα τού «διαφορικού λογισμού».
Καί τούτο άκριβώς είναι έκείνο πού έμβάλλει τήν βεβαιότητα ότι ούτε καί στό μέλλον μπορούν νά αποκτήσουν άντιθετική σχέση , ίδιαίτερα μέσα στήν τεχνολογική χειραφέτηση άλλων πολιτιστικών ήπείρων , μέ ό,τι ίστορικά αύτός παρήγαγε στήν μεσογειακή περιοχή .
Ο Spengler «περιχαράκωσε» τόν εύρωπαικό πολιτισμό προκειμένου νά τόν «καταδικάση» . Οί παγκόσμιοι πόλεμοι συνετέλεσαν άκόμη πρός τούτο : στό ν’ άποκτήση ή Εύρώπη μιάν άνέλπιστη πολιτιστική κλειστότητα καί φοβία , παρά τήν τάση παγκοσμιότητας καί «έξόδου» πού άπέκτησε κατά τούς τελευταίους αίώνες .
Μέ άφορισμούς φοβίας άρχίζει ό Spengler τό βιβλίο του .
Δέν ύπάρχει , λέγει , μία μαθηματική έπιστήμη , άλλά τόσες όσοι καί οί πολιτισμοί . Γιατί τά μαθηματικά είναι ένα είδος τέχνης , τέχνης οίκειώσεως καί προσδοχής τού κόσμου . Αν ήσαν έπιστήμη , θά μπορούσαν νά όρίσουν τό άντικείμενό τους , όπως ή Αστρονομία καί ή Ορυκτολογία . Αλλά τέτοιο πράγμα δέν τούς είναι δυνατόν .
Η διαφορά άρχίζει μέ τήν άντίληψη τών άρχαίων , γιά τούς όποίους όλα τά μαθηματικά είναι Στερεομετρία .
Ο άριθμός τού Πυθαγόρα είναι ή ούσία τού νοητώς καταληπτού , τού περατού , μιάς ψυχής τού «έδώ καί τώρα» .
Τό χρησιμοποιούμενο μάρμαρο γίνεται κάτι , μόνο όταν άποκτήση μορφή καί όρια , άριθμό . Πέραν άπό αύτά ύπάρχει τό άπραγματοποίητο , τό τίποτε , τό χάος . Τό άθροισμα τέτοιων «περατοτήτων» είναι ό κόσμος , πέραν άπό αύτές ύπάρχει τό «μή όν» . Αυτό πού έννοούμε ώς χώρο καί συνάρτηση τού όποίου θεωρούμε τήν έμφάνεια τών πραγμάτων , είναι ή άπόσταση πού τά χωρίζει καί πού τούς δίνει ύπόσταση .
Ετσι μπορεί νά καταλάβη κανείς καί τήν μεταφυσική σημασία τού «άπείρου» τού Αναξίμανδρου : είναι ή «άρχή» , δηλ. τό κάτι πού δέν έχει άκόμη μορφή καί άριθμό , ένα άγαλμα πού δέν βγήκε άκόμη άπό τό μαρμαρό του .
Τά μαθηματικά αύτά δέν είναι νοητικές σχέσεις τού χώρου , άλλά περατές ένότητες τού ματιού . Γι’ αύτό καί οί άριθμοί τών άρχαίων είναι οί θετικοί άκέραιοι , οί άριθμοί πού δέν έχουν «συνέχεια» . Οταν άνακαλύπτωνται οί άσύμμετροι καί ό «π» , γίνονται φοβία καί μύθος , πού όποιος τούς άποκαλύψει κινδυνεύει νά χαθή .
Είναι τά πράγματα πού δέν έπιδέχονται «μέτρο» καί πού πρέπει νά μείνουν κρυφά καί διά λόγου άρρητα .
Ουσιαστικά πρόκειται γιά τήν περατότητα τών άποστάσεων τής μικρής «πόλης-κράτους» .
Πέραν άπό τίς μικρές τούτες άποστάσεις ύπήρχαν τά μεγέθη τής Αστρονομίας τών Βαβυλωνίων , βάσει τών όποίων διακινούσαν τό έμπόριό τους τά πλοία τών Αίγυπτίων καί τών Φοινίκων . Καί όλα τούτα είναι ύπέρμετρα καί κινδυνώδη καί δημιουργά τού άγχους . Τού εύλόγου άγχους , γιατί μέσα σέ τούτην την άμετρότητα τών διαστάσεων τής Ανατολής ύπάρχει ή έπικίνδυνη διάσταση γιά τίς πεπερασμένες συνθήκες τού βαλκανίου άρχαίου Έλληνα : ό Ελληνας τής μικράς Ασίας…Μιά άνατροπή τής σχέσεως μ’ αύτόν θά έσήμαινε άνατροπή καί τών δύο .
Ο Spengler διαπιστώνει σωστά , άλλά δέν διαφωτίζει πλήρως…
Η φοβία πρό τής άπεραντοσύνης καί τού ύπέρμετρου τής Ανατολής , ή εύκολος στόχαση στά δεδομένα τού πεπερασμένου χώρου του , δέν έπετρεψαν στόν άρχαίον Αθηναίον ν’ άνακατευθή , νά έφαρμόση τήν άσυνέχεια τών φυσικών άριθμών πάνω στήν συνέχεια μιάς ύγρής γραμμής πού θά ένωνε τήν Αθήνα μέ τό Κάιρο καί ν’ άνακαλύψη τόν «διαφορικό λογισμό».
Στατική καί «έπαναληπτική» είναι έπίσης καί ή άποψη του περί Ιστορίας . Δέχεται ((κύκλους)) καί έπαναλήψεις κατά τό (( ούδέν καινόν ύπό τόν ήλιον)) . Αρκέσθηκε νά βρή την φιλοσοφία σάν τρόπο ίστορικής άμύνης καί μέριμνα διατηρήσεως τής συνοχής τού μεσογειακού χώρου καί άφησε νά πραγματωθή άλλοιώς μέσα σέ τούτη τήν μοναδική κλειστή θάλασσα τού κόσμου ή άνακάλυψη τού ((διαφορικού λογισμού)) .
Η Κων/πολη , ή Βαγδάτη ή ή Ρώμη — κάποιος άπό τούς τρείς αύτούς έταίρους τής μεσογειακής κοινοπραξίας θά τόν άνεκάλυπτε . Ο κλήρος έτυχε στήν Ρώμη , στόν νεώτερο τών ((έταίρων)) , όταν οί άλλοι δύο τήν άπήλλαξαν άπό ίστορικά βάρη καί ό έλληνισμός τού Levant άνέλαβε νά δώση σ’ αύτήν τό ίστορικό έργαλείο τής Αναγέννησης . Ο ((έλληνισμός τού Levant)) –δηλ. τό μοναδικό ίστορικό έργαλείο πού διαθέτει ή Εύρώπη έντός τής Μεσογείου …Εντός τής Μεσογείου ματαιοπονούν οί ίστορικοί νά καθορίσουν πολιτιστικά σύνορα ,νά βρούν πού τελειώνει ή ((Δύση)) καί πού άρχίζει ή ((Ανατολή)) .
Στά μάτια ένός μεσογειακού , οί όποιες μεγαλοφυείς συνθέσεις τών ίστορικών , πού προσπαθούν νά βρούν καθορισμούς γιά νά όρίσουν ((σύνορα)) , μοιάζουν πράγματα άλλόκοτα .
Γιατί έντός τής Μεσογείου ύπάρχει νερό , δηλ. ((συνέχεια)) καταστάσεων καί πραγμάτων …Μεσόγειος δέν θά πή μόνον ((μέσον τής Γής )) θά πή άκόμα καί σημείο πού ένώνει τήν Γή . «
cronopiusa said
ΕΦΗ - ΕΦΗ said
Archeologia, il mare di Taranto restituisce preziosa statuetta ellenica
Άγαλμα της Αφροδίτης στον Τάραντα
https://it.wikipedia.org/wiki/Museo_archeologico_nazionale_di_Taranto
Νέο Kid said
62. Aβονίδα, περνιέσαι για δάσκαλος ρε ανόητε; Άει χάσου μυρμηγκάκι!
Avonidas said
#64. Στον Πυθαγόρα, ή τουλάχιστον στους πυθαγόρειους, αποδίδεται με αρκετή ασφάλεια ΜΙΑ απόδειξη. Παραδίδονται κι άλλες, πριν και μετά τον Πυθαγόρα, από αρκετούς πολιτισμούς (π.χ. τους Ινδούς και τους Κινέζους).
Ο Ευκλείδης ασφαλώς αποδεικνύει το θεώρημα στα Στοιχεία του, αλλά πρόκειται για άλλου επιπέδου απόδειξη και σε άλλο πλαίσιο: όλες οι αποδείξεις στα στοιχεία αντλούν την εγκυρότητά τους από τα αξιώματα που έθεσε ο Ευκλείδης. Αντίθετα, αποδείξεις όπως π.χ. του Πυθαγόρα ή του Θαλή βασίζονται μεν σε απλούστερες προτάσεις που θεωρούνται αυταπόδεικτες, αλλά ποτέ δεν διατυπώνεται ρητά ποιες από αυτές τις προτάσεις θεωρούνται αξιώματα, ή αν είναι πραγματικά ανεξάρτητες (δηλαδή δεν μπορούμε να αποδείξουμε κάποιες απ’ αυτές χρησιμοποιώντας άλλες).
Τώρα, σε ό,τι αφορά τα εμπειρικά μαθηματικά των Αιγυπτίων και των Βαβυλωνίων, είναι ασφαλώς παραμυθάκι η απλοϊκή αντίληψη ότι μέτρησαν μερικά τρίγωνα, ανακάλυψαν τη σχέση πίσω από το πυθαγόρειο θεώρημα και απλώς έμειναν ικανοποιημένοι από αυτό. Είναι βέβαιο ότι οι εμπειρικοί γεωμέτρες είχαν καταλάβει τη γενική ισχύ αυτών των θεωρημάτων. Το γιατί δεν μας κληροδότησαν αποδείξεις είναι επίσης αρκετά εύκολο να εξηγηθεί: επρόκειτο για γνώση προορισμένη για τους μύστες κι όχι για τους αμύητους.
Triant said
Επειδή το πιο πιθανό είναι να κάνουνε πλάκα, προτείνω να μην ασχοληθούμε καθόλου, σαν να μην τρέχει τίποτα (κόντρα πλάκα).
Νέο Kid said
Όσο για τη συζήτηση που λες, κάνε μια ενδοσκόπηση και θα δεις ότι είσαι εσύ που ψάχνεις διαρκώς «να την πεις» στον άλλον, και να κάνεις την όποια αυτοεπιβεβαιωτική «φιγούρα» ,χωρίς να σπαταλήσεις δευτερόλεπτο αμφισβήτησης της ξερολίασης που σε δέρνει.
Συζήτηση με τον εαυτό σου ,χρήσιμη είναι κι αυτή, αλλά σε μονιμότητα καταντάει γκροτέσκα.
ΕΦΗ - ΕΦΗ said
Οι Πυθαγόρειοι διέκριναν ως βασικότερο όλων των µαθηµάτων τους την
Αριθµητική, εξαιτίας του ότι δεν υπάρχουν αιτήµατα παρά µόνο ορισµοί. Γι’ αυτό και
τη θεωρούσαν µία επιστήµη τέλεια, καθαρή, µη αµφισβητήσιµη (Νεγρεπόντης,
2005). Υποστήριζαν ότι οι αρχές των µαθηµατικών είναι και αρχές όλων των όντων,
αρχές των πάντων. Ο Αναπολιτάνος (1985) αναφέρει ότι η Πυθαγόρεια µελέτη των
αριθµών άρχισε σαν πνευµατική αναζήτηση. Για τους Πυθαγόρειους, κάθε αριθµός
έφερε µια συµβολική ταυτότητα. Ο 1 ήταν ο γεννήτορας όλων των αριθµών, επειδή
κάθε αριθµός µπορεί να δηµιουργηθεί από αυτόν από την επαναλαµβανόµενη
προσθήκη. Συνεπώς, είχε µια ιδιαίτερη θέση και δε θεωρήθηκε αριθµός. Ο 2 και ο 3
αντιπροσώπευαν τους θηλυκούς και αρσενικούς χαρακτήρες, αντίστοιχα, και ο 5 την
ένωσή τους. Πέντε ήταν επίσης ο αριθµός των κανονικών πολύεδρων, στερεά των
οποίων οι όψεις τους είναι κανονικά πολύγωνα
Click to access dipl_triantafyllou.dimos.pdf
Μιχάλης Νικολάου said
17, … ΜΑΘΗΜΑΤΙΚΟΥΣ («αυτούς που ενδιαφέρονται για τη μάθηση»).
… Οι μαθηματικοί κατέφυγαν στον Τάραντα …
Η διασπορά τόσων μαθηματικά και φιλοσοφικά προικισμένων ανθρώπων
συνέβαλε στη δημιουργία ενός κέντρου πνευματικής δραστηριότητας άνευ προηγουμένου …
Έμμεσο αποτέλεσμα ήταν
οι διάσπαρτοι αυτοί άνθρωποι να συνδεθούν
σε έναν ευρύ ιστό
με επίκεντρο τον Τάραντα,
γνωστόν και ως
«Στου Ταραντάκου»
Νέο Kid said
Μόνο και μόνο για να μη μένουν παραμένουσες εντυπώσεις από τις ανόητες ξερολιάσεις του σχολίου 69. …
: Kαμία γενική απόδειξη προγενέστερη του Πυθαγόρα , ούτε υπάρχει ,ούτε καν φημολογείται σε Ινδούς και Κινέζους. Στην κίνα το Π.Θ ονομάζεται Κon Ku. H αρχαιότερη κινεζική αναφορά σ’αυτό βρίσκεται στη μαθηματική πραγματεία Chou Pei Suan Ching που γράφτηκε περίπου τον 3 αιωνα π.Χ και στην οποία υπάρχει η απόδειξη της ισότητας του εμβαδού του τερταγώνου πλευράς 5 με τα τετράγωνα πλευρών 3 και 4 . (απόδειξη γενικότητας δεν υπάρχει και το 5^2=3^2+4^2 =ορθ.τρίγωνο ήταν φυσικά γνωστό ως «αρχή καθετότητας» (αυτός ήταν κι ο τρόπος που «γώνιαζαν» οι Αιγύπτιοι και οι Μεσσοποτάμιοι, πολύ νωρίτερα )
Φυσικά και η αναφορά στο 69. περί του ε’ιδους εγκυρότητας της Ευκλίδειας απόδειξης είναι μια ανοησία. (αλλά απαιτείται πολύς χρόνος και ανάλυση και βαριέμαι. Εν τάχει να πω ότι δεν ήταν ξεκάθαρο ούτε για τον Ευκλέιδη αν το κρίσιμο-επίμαχο 5ο αίτημα (αξίωμα) ήταν πρόταση ή αξίωμα. Και βεβαίως το Π.Θ είναι μαθηματικώς απολύτως ισοδύναμο με το 5ο αίτημα!
άλλος_ένας_πανάσχετος said
Σχετικά με τον Άινσταιν και την φόρμουλα. Η αρχική μορφή της φόρμουλας ήταν πολύ διφορετική και την είχαν διατυπώσει και άλλοι πριν από αυτόν. Κάτι σαν την -m=8/3*hE0/B0 του Henri Poincaré (1900). Η συμβουλή του πυθαγορισμού και του Άινσταιν είναι, η φόρμουλα πρέπει να είναι πανέμορφη στην απλότητα της. Κάτι σαν την φόρμουλα του Όιλερ. Έτσι μετά από πολές παραδοxές και απλοποιήσεις έχουμε τελικά το Ε=mc^2, σχεδόν 50 χρόνια μετά. O ίδιος μυστικιστικός πυθαγοριμός ωθεί τους επιστήμονες στην CERN να ψάξουν την μία και μοναδική θεωρία των πάντων, να συμπληρώνουν τα κενά όπου υπάρχουν ασυμμετρίες, ενώ ξέρουμε με απόλυτη σιγουριά ότι δεν υπάρχει τέτοια θεωρία των πάντων και δεν είναι απαραίτητη η συμμετρία στο μοντέλο. Το μοντέλο όμω οφείλει να είναι πανέμορφο. Κάπως ετσι δουλεύει ο ανθρώπινος νους.
ΕΦΗ - ΕΦΗ said
48,45 Τα αρνοπρόβατα του Τάραντα δεν ξέρω αν ήσαν παχουλά (δύσκολο σε βραχότοπο) αλλά είχαν φίνο, ονομαστό μαλλί!
http://www.e-istoria.com/me2_7.html
sarant said
70 Το καλύτερο!
76 Ο Τάραντας έχει πολλά λεξιλογικά κτλ., αναφέρθηκε ήδη η ταραντέλα-ταραντούλα. Να μας χρηματοδοτήσει ο δήμαρχος να κάνουμε μια εκδρομή 🙂
Γιάννης Ιατρού said
73: Απίθανος είσαι ρε Μιχάλη !!!
ΣΠ said
Ας αναφέρω εδώ την γενίκευση του πυθαγόρειου θεωρήματος σε τυχόν τρίγωνο.
Νόμος των συνημιτόνων: α^2=β^2+γ^2-2βγ cosA.
Μιχάλης Νικολάου said
17, … Πίστευε πως κάθε πλανήτης είχε μια συγκεκριμένη
μελωδία ανάλογη με την απόσταση του από τον ήλιο.
Όσο πιο κοντά βρισκόταν σ’αυτόν, τόσο πιο ψηλές ήταν οι νότες. …
Έχει ενδιαφέρον πως, ενώ η πυθαγόρεια πεποίθηση ήταν κατά πάσα πιθανότητα συμπτωματική,
οι αποστάσεις των πλανητών από τον ήλιο ακολουθούν προσεγγιστικά τον νόμο των Τίτιους-Μπόντε
(ακόμα και για πλανήτες άγνωστους τον καιρό του Πυθαγόρα)
δηλαδή Απόσταση = 0.4 + 0.3χ, όπου χ = 0, 1, 2, 4, 8,…,
σε αντιστοιχία με μετάβαση από μια οκτάβα στην επόμενη
για κάθε διπλασιασμό του χ από πλανήτη σε πλανήτη.
Για κάποιον λόγο το όλο θέμα Πυθαγόρας-πλανήτες-αναλογίες-μουσική συνεχίζει να ασκεί
κάποια γοητεία σε μελετητές, ιδίως των ανθρωπιστικών επιστημών.
Avonidas said
#74. Φυσικά και η αναφορά στο 69. περί του ε’ιδους εγκυρότητας της Ευκλίδειας απόδειξης είναι μια ανοησία. (αλλά απαιτείται πολύς χρόνος και ανάλυση και βαριέμαι. Εν τάχει να πω ότι δεν ήταν ξεκάθαρο ούτε για τον Ευκλέιδη αν το κρίσιμο-επίμαχο 5ο αίτημα (αξίωμα) ήταν πρόταση ή αξίωμα.
Κι αυτό κατά κάποιο τρόπο αναιρεί το γεγονός ότι ο Ευκλείδης βάσισε όλες του τις αποδείξεις, συνειδητά και μεθοδικά, σε ρητά διατυπωμένα αξιώματα — το πρώτο, απ’ όσο γνωρίζουμε, αξιωματικό σύστημα στην ιστορία των μαθηματικών;
Καθόλου δεν θα επηρέαζε την ισχύ των αποδείξεών του αν τελικά το 5ο αίτημα μπορούσε να αποδειχτεί από τα υπόλοιπα 4. Απλώς θα ταυτιζόταν η απόλυτη γεωμετρία με την ευκλείδεια γεωμετρία, και οι μη ευκλείδειες γεωμετρίες θα ήταν λογικά αδύνατες.
Pedis said
# 69 Aβο –
α) Ποια;
β) ναι, για τα στοιχεία και δεν είναι και λίγο. Πριν φτάσει να το αποδείξει έχει κάνει πολύ δρόμο.
γ) έτσι λένε οι ειδικοί. Δεν ξέρω τι έχεις στο μυαλό σου.
Avonidas said
#82. α)
https://en.wikipedia.org/wiki/Pythagorean_theorem#Pythagorean_proof
Avonidas said
#83. Να σημειώσουμε ότι αυτή η απόδειξη προϋποθέτει ότι το άθροισμα των γωνιών τριγώνου είναι ίσο με δύο ορθές (αλλιώς πώς ξέρουμε ότι το τετράπλευρο στο κέντρο της 1ης διάταξης είναι τετράγωνο;) κι αυτό με τη σειρά του προϋποθέτει το 5ο αίτημα.
Avonidas said
#74. Από τότε που είχαμε την πρώτη μας διαφωνία εδώ μέσα προσπαθείς να απαξιώσεις οτιδήποτε λέω, χωρίς καμιά εξαίρεση. Πόσο ώριμο το βρίσκεις αυτό;
sarant said
73 Γεια σου Μιχάλη!
gpointofview said
Δεν λέω, σοφό το «γηράσκω αεί διδασκόμενος» αλλά αναφέρεται στις εμπειρίες της ζωής και όχι στην ξεστραβωτική μελέτη γιατί συσσωρευμένες γνώσεις που δεν έχουν που να εφαρμοσθούν…η συνέχεια από τον Λάμπρο-αν θέλει-γιατί με κουράζουν τα αυτονόητα.
Λεύκιππος said
Και μια και αναφέρθηκε αρκετές φορές σήμερα ο Quentin Tarantino, να πούμε ότι σήμερα έχει τα γενέθλιά του. Γεννήθηκε στις 27 Μαρτίου 1963.
Σύμπτωση; Δεν νομίζω.
Pedis said
# 83 – οκ. Μα, πιο κοντινή πηγή από τον Πρόκλο (που γράφει μια χιλιετία μετά τον Πυθαγόρα) δεν υπάρχει;
(κάνω γούστο την πηγή της βίκι, αναφέρεται στον Πρόκλο και τσιτάρει κάποιο σύγχρονο εκλαικευτικό βιβλίο.)
—
έχω την εντύπωση ότι έχει ήδη σχολιαστεί στο παρελθόν (από τον Μιχάλη; δεν είμαι σίγουρος) αλλά μια από τις πιο απλες, γρήγορες και γοητευτικές αποδείξεις του θεωρήματος είναι εκείνη που βασίζεται σε διασταττική ανάλυση. Λ.χ.
https://strathmaths.wordpress.com/2011/10/15/pythagoras-two-favourite-proofs/
(η δεύτερη)
Pedis said
όσον αφορά το 82γ δεν μου απάντησες, Αβό. Δώσε καμιά αναφορά.
Avonidas said
όσον αφορά το 82γ δεν μου απάντησες, Αβό. Δώσε καμιά αναφορά.
Δεν κατάλαβα σε τι αναφέρεσαι.
spiral architect 🇰🇵 said
Ρε σεις μην τσακώνεστε σα κοπέλια, κουλάρετε και και πατήστε εδώ για να δείτε τον Flat Earther (Mad) Mike κάπου στην έρημο Μοχάβε της Καλιφόρνιας να προσπαθεί να αποδείξει δια γυμνού οφθαλμού ότι η Γη είναι επίπεδη.
(η εκτόξευση και η προσεδάφιση του αυτοσχέδιου πυραύλου από το 26:30 του βίντεο περίπου)
Τι Πυθαγόρειοι, Ελεάτες, και Στήβεν Χόκινγκ μού τσαμπουνάτε, η Γη είναι επίπεδη και οι πύραυλοι του μέλλοντος θα είναι ατμοκίνητοι. 😀
Avonidas said
#89. αλλά μια από τις πιο απλες, γρήγορες και γοητευτικές αποδείξεις του θεωρήματος είναι εκείνη που βασίζεται σε διαστατική ανάλυση
Η απόδειξη υποθέτει ότι οι γωνίες DAB και DBC είναι ίσες, και επομένως έμμεσα χρησιμοποιεί την ομοιότητα τριγώνων.
Avonidas said
#92. Τον είδα, τον είδα. Σύντομα έτσι που πάει θα δει την επίπεδη γη κι από μέσα
ΚΑΒ said
«Οι χαλασοχώρηδες» βέβαια είναι νουβέλα και όχι διήγημα.
Pedis said
# 91 – στο #69 γράφεις: Τώρα, σε ό,τι αφορά τα εμπειρικά μαθηματικά των Αιγυπτίων και των Βαβυλωνίων, είναι ασφαλώς παραμυθάκι η απλοϊκή αντίληψη ότι μέτρησαν μερικά τρίγωνα, ανακάλυψαν τη σχέση πίσω από το πυθαγόρειο θεώρημα και απλώς έμειναν ικανοποιημένοι από αυτό. Είναι βέβαιο ότι οι εμπειρικοί γεωμέτρες είχαν καταλάβει τη γενική ισχύ αυτών των θεωρημάτων.
αναρωτιεμαι πώς γνωρίζουμε ότι τα είχαν στο μυαλό τους ως θεωρήματα; Δώσε αναφορά. Αυτό.
# 93 – προφανώς. Τα θεμέλια των απλών συλλογισμών είναι σύνθετα (αλλά γνωστά δηλ. με κοινώς αποδεκτή ισχύ).
Pedis said
# 93 – κι όχι μόνο αυτό, να προσθέσω και το εξής. Το ίδιο το αρχικό άνσατζ για τη συνάρτηση δεν είναι ό,τι πιο τρίβιαλ, έτσι; Δεδομένων τούτων, όμως, η απόδειξη είναι φανταστική. Δεν συμφωνείς;
sarant said
88 Σοβαρά; Φοβερό!
Avonidas said
#96. Α, κατάλαβα τώρα. Δεν εκφράστηκα σωστά. Δεν το γνωρίζουμε ασφαλώς ότι είχαν στο μυαλό τους τα θεωρήματα, ούτε έχω κάποια πηγή που αποδεικνύει κάτι τέτοιο.
Αυτό που εννοώ είναι το εξής: συζητάμε για πολιτισμούς με σημαντικότατα επιτεύγματα στη γεωργία, την αρχιτεκτονική και την αστρονομία. Μου είναι αδύνατον να φανταστώ ότι θα μπορούσαν να τα επιτύχουν όλα αυτά χωρίς να έχουν εμπιστοσύνη στην εγκυρότητα των εργαλείων και των μεθόδων τους. Όταν καθημερινά οριοθετείς αγροτεμάχια, ή υπολογίζεις τον όγκο των σιτηρών για τους φόρους, ή χτίζεις κτίσματα ευθυγραμμισμένα με τους αστερισμούς, χρειάζεσαι σιγουριά.
Έτσι λοιπόν, αν μπορούσες να ρωτήσεις π.χ. έναν Αιγύπτιο γεωδαίτη πόσο σίγουρος είναι ότι ένα τρίγωνο όπου το τετράγωνο της υποτείνουσας ισούται με το άθροισμα των τετραγώνων των πλευρών θα του βγει ορθό, πάω στοίχημα ότι θα σου λεγε «κόβω το κεφάλι μου ότι έτσι είναι». Ότι δεν είναι σύμπτωση, αν προτιμάς, που κάτι τέτοιο ισχύει στο τρίγωνο με πλευρές 3,4 και 5.
Ε, αυτή η διάκριση ανάμεσα σε κάτι που ισχύει συμπτωματικά και σε κάτι που ισχύει νομοτελειακά είναι κατά τη γνώμη μου ουσιαστικά η βάση της ιδέας της μαθηματικής απόδειξης. Το επόμενο βήμα, βεβαίως, είναι να βρεις έναν τρόπο να αποκλείσεις εντελώς το ενδεχόμενο της σύμπτωσης. Αυτό το βήμα πράγματι δεν μπορώ να γνωρίζω αν το είχε κάνει κάποιος πριν τα ελληνικά μαθηματικά.
Pedis said
# 99 – οκ. μπορεί. Η εμπειρική επαγωγική μέθοδος είναι πρακτικά ισχυρό εργαλείο στις ανθρώπινες δραστηριότητες. Η ανάπτυξη αδιαφιλονικητων μεθόδων απόδειξης, βέβαια, προυποθέτει, εκτός πολλών άλλων παραγόντων, έναν ιδιαίτερο τύπο κοινωνικών σχέσεων, τέτοιες που να εγγυώνται ότι δάσκαλος και μαθητής είναι ισότιμοι. Μάλλον, αυτό δεν διέθεταν, όχι μόνο οι μεσοποταμιακοί πολιτισμοί αλλά, με εξαίρεση την ύστερη αρχαιοελληνική περίοδο, όλοι οι πολιτισμοί μέχρι πριν από πεντέξι αιώνες.
ΣΠ said
88
Και ο Ιβάν Σαββίδης έχει σήμερα γενέθλια. Γεννήθηκε στις 27 Μαρτίου 1959.
Μιχάλης Νικολάου said
76, … 48,45 Τα αρνοπρόβατα
του Τάραντα
δεν ξέρω αν ήσαν παχουλά …
Φαίνεται πως ούτε και
τα Αρνοπρόβατα
της Φλωρεντίας
(στον γνωστό ποταμό της).
Η περίφημη bistecca Fiorentina
είναι από μοσχάρι.
Ριβαλντίνιο said
Αφήνω αυτό εδώ για τον gpoint :
ΟΙ χτεσινοί μπαταχτσήδες το παίζουν σήμερα νοικοκυραίοι!!!
http://www.greenmood.gr/2018/03/blog-post_72.html
Αγγελος said
ΝεοKid, προτού καν διαβάσω τα σχόλια του Αβωνίδα, είχα αποκτήσει κι εγώ πώς ήταν δυνατόν να προσυπογράφει κείμενο που να λέει ότι ο Αϊνστάιν «πέρασε μεγάλος μέρος της ζωής του υπνωτισμένος από αυτή την ιδιαίτερη μορφή αριθμητικού πυθαγορισμού ώσπου συνέλαβε τον θρυλικό τύπο της σχετικότητας E=mc^2.» Όχι γιατί δεν υπάρχει κάποιο στοιχείο πυθαγορισμού στη γενική τουλάχιστον σχετικότητα (αν και ο μέγας πυθαγόρειος είναι μάλλον ο Εντιγκτον 🙂 ), αλλά γιατί κι εμένα η φράση «τον θρυλικό τύπο της σχετικότητας E=mc^2.» μου φάνηκε επιπέδου Οικογενειακού Θησαυρού.
Και νενικοτερα, ως αντίδοτο στα εγκώμια του Πυθαγόρα και του πυθαγορισμού θα ήθελα να παραθέσω τη φράση του Ράσσελλ, που δεν έχω μπροστά μου την πηγή της αλλά τη θυμάμαι με βεβαιότητα, «Υπήρχε όμως ένα φίδι στον ελληνικό ορθολογισμό, και το φίδι αυτό ήταν ο Πυθαγόρας.» Monumentum aere perennius θα μείνει η βασική του ιδέα ότι ο κόσμος πρέπει να έχει μαθηματική εξήγηση, αλλά κατά τα άλλα κι εγώ πιστεύω πως η επίδραση του Πυθαγόρα στον Πλάτωνα και διαμέσου αυτού σε όλη τη φιλοσοφία μάλλον βλαβερή στάθηκε. το
Αγγελος said
«να προσυπογράφεις» εννοούσα φυσικά.
Pedis said
# 104 – Όχι γιατί δεν υπάρχει κάποιο στοιχείο πυθαγορισμού στη γενική τουλάχιστον σχετικότητα
1) Τι σε κάνει να ισχυρίζεσαι κάτι τέτοιο;
2) σε ποια φυσική θεωρία δεν υπάρχει;
το παρακάτω έχει μεγάλη διάδοση και έχει γεννήσει μεγάλη συζήτηση:
The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Eugene Wigner
https://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
Πάντως, ο Αινστάιν είχε πει (είναι αληθινό αυτό, σε επιστολή στον Λεμέτρ) ότι η η («ιδεολογική» προσθέτω εγώ) προκατάλειψη είναι καλός σύμβουλος στην επιστήμη, αλλά κακός κριτής.
Σκύλος said
102
Καλά, βρε Μιχάλημ’, ο Άρνος γνωστός είναι https://en.wikipedia.org/wiki/Arno
Ο Πρόβατα πού ρέει;
Αγγελος said
Από όσα καταλαβαίνω, τη γενική σχετικοτητσ την έφτιαξε ο Αϊνστάιν a priori, προσπαθώντας να συμμορφωσει τη βαρύτητα με την ειδική σχετικότητα, για λόγους δηλαδή λογικής συνέπειας και συμμετρίας, χωρίς να έχει καμία πειραματική ένδειξη ότι η θεωρία του Νεύτωνα έπασχε. Αυτή την a priori πεποίθηση ότι μια τέτοια θεωρία πρέπει να υπάρχει μπορούμε, νομίζω, να την ονομάσουμε πυθαγόρεια, με την καλή έννοια.
Κατά μία έννοια, αυτού του είδους ο πυθαγορισμός διαπνέει κάθε φυσικομαθηματική θεωρία• αλλά ας πούμε η ειδική σχετικότητα νομίζω πως είχε αρκετά πιο στέρεη πειραματική βάση ακόμη και το 1905.
Αγγελος said
Αν θυμάμαι καλά, και ο Κόντος συνιστούσε να τονίζουμε ‘Βυζαντίνος’. Ήταν από τις διδασκαλίες για τις οποίες τον κορόιδευαν οι εχθροί του.
Pedis said
# 108 – χωρίς να έχει καμία πειραματική ένδειξη ότι η θεωρία του Νεύτωνα έπασχε υπήρχαν μικρές διαφορές μεταξύ παρατήρησης και θεωρίας (που άντεχαν στο χρόνο και δεν φαίνονταν να είναι συνέπειες δευτερευόντων υποθέσεων της θεωρίας όπως είχε ήδη συμβεί.).
αλλά ας πούμε η ειδική σχετικότητα νομίζω πως είχε αρκετά πιο στέρεη πειραματική βάση ακόμη και το 1905
Όχι. Πρωτίστως, θεωρητικές ασυνέπειες φρόντιζε να σιάξει. Έχει γίνει μεγάλη συζητηση μεταξύ των ιστορικών αν είχε στο μυαλό του ή οδηγό του ή αν ακόμη γνώριζε τα πειράματα των Μάικελσον και Μόρλευ. Η απάντηση του έγκυρου ιστορικού της επιστήμης G. Holton είναι αρνητική.
«Einstein, Michelson, and the «Crucial» Experiment», G. Holton,
(δυστυχώς, δεν το βρίσκω στο νέτι)
(ΥΓ. δεν είναι μόνο οι θεωρίες που βγαίνουν εσφαλμένες, συμβαίνει και στα πειράματα, ίσως, το ίδιο συχνά.
Κάτι που παρέλειψε εντελώς ο Πόππερ.
Ο μεγάλος θεωρητικός δεν δεσμεύεται από όλα τα πειράματα της εποχής.)
ΣΠ said
110 υπήρχαν μικρές διαφορές μεταξύ παρατήρησης και θεωρίας (που άντεχαν στο χρόνο και δεν φαίνονταν να είναι συνέπειες δευτερευόντων υποθέσεων της θεωρίας όπως είχε ήδη συμβεί.).
Η κυριότερη ήταν η μετατόπιση της τροχιάς του Ερμή.
sarant said
109 Πράγματι. Στον Ψευδαττικισμού έλεγχο, του Βερναρδάκη:
Ενομισεν ο Αττικιστής και κατα τούτον οι Αβδηρίται, οτι η σημερινη ελληνική γλώσσα μεταβάλλεται εις αρχαίαν ου μόνον ελληνικήν αλλά και αττικήν αυτόχρημα, εάν είπωμεν Ακαδήμεια και όχι Ακαδημία, Βυζαντίνος και Αλεξανδρίνος και όχι Βυζαντινός και Αλεξανδρινός, απελπισμός και όχι απελπισία….
Με περισπωμένη βέβαια το Βυζαντίνος και το άλλο.
άλλος_ένας_πανάσχετος said
Νομίζω η ιστορία ξεκίνησε με το φωτοηλεκτρικό φαινόμενο όπου σκόνταψε η κλασσική θεωρία και εξηγήσε ο Άινσταιν (και του έδωσαν το βραβείο Νόμπελ). Από την εξήσωση E = h*f μέχρι την Ε=mc^2 μικρή η απόσταση.
venios said
Θεωρώ ότι ο Πυθαγόρας βρίσκεται σε προεπιστημονικό επίπεδο. Μαθηματικά καλά για την εποχή τους ήξεραν και οι ανατολικοί σοφοί (Αιγύπτιοι, Βαβυλώνιοι και άλλοι), αλλά ήταν προνόμιο μιας κάστας ειδικών-μυστών. Αυτό που διαφοροποιεί τα ελληνικά μαθηματικά ως επιστήμη είναι ο δημόσιος λόγος και η διατύπωση επιχειρημάτων, που είναι και η βάση της απόδειξης. Κάτι που πρέπει να συσχετισθεί και με το δημοκρατικό πολίτευμα και την ισηγορία. Το γεγονός ότι ο Π μόνο μίλαγε και δεν δεχόταν ούτε καν απορίες, το γεγονός ότι τον Ίππασο τον εξόρισαν και ίσως και τον έπνιξαν όχι επειδή απέδειξε την αρρητότητα του Ρίζα2, αλλά επειδή το αποκάλυψε στους κοινούς θνητούς, το ότι διατείνεται ότι τα πάντα μπορούν να περιγραφούν με φυσικούς αριθμούς (ή «είναι» αριθμοί) αντί να διερευνήσει ποια φαινόμενα περιγράφονται με αριθμούς (όπως οι συχνότητες των μουσικών ήχων), τοποθετούν τον Πυθαγόρα και τη σχολή του στην προεπιστημονική φάση των Μαθηματικών και της σκέψης – κάτι που δεν μειώνει την αξία του ούτε την προσφορά του.
gpointofview said
# 103
Πρέπει να είσαι πνευματικά ανάπηρος και τυφλωμένος από οπαδικό μίσος αν θεωρείς επιχείρημα πως ο ΠΑΟΚ ευνοήθηκε όταν είναι ο μόνος που ΠΛΗΡΩΣΕ, χωρίς τις προσαυξήσεις φυσικά που ήταν νόμος ΓΙΑ ΟΛΟΥΣ-και εγώ πλήρωσα τότε τα χρέη μου στην εφορία χωρίς προσαυξήσεις- ενώ υπάρχουν ομάδες που τα έγραψαν στο χιόνι όπως η ΑΕΚ και ο Αρης -τρώγοντας μάλιστα και τα χρήματα των ποδοσφαιριστών τους – με νόμους που ψηφίσθηκαν ειδικά για τους συλλόγους.
Οσον αφορά τα περί Μελίσση και Σαλπιγγίδη περίμενα πως θα είχες το στοιχειώδες μυαλό να καταλάβεις πως δημιουργήθηκε το χρέος των 60-90 εκατομμυρίων σ’ αυτά τα χρόνια… βρίσκανε παίκτη σαν τον Μελίσση που έκανε 400 χιλιάρικα το πολύ δίνανε 450 στον ΠΑΟΚ και μια 50άρα στο Μελίσση για να μη μιλήσει, χρεώνανε 2μύρια την ΠΑΕ και τρώγανε το ενάμισυ. Γκέγκε μικρέ και άσχετε ή περιμένεις να το βρεις γραμμένο στο αρχείο ;
Σταμάτα να μελετάς τα…αρχεία και βάλε λίγο το μυαλό σου να δουλέψει και μη με ζαλίζεις μεγάλο άνθρωπο με τις μαλακίες που γράφει κάθε πικραμένος βάζελος. Στο έχω ξαναπεί πως άνθρωπος που ΑΣΧΟΛΗΘΗΚΕ με το ποδόσφαιρο και παραμένει οπαδός του ΠΑΟ ή του ΟΣΦΠ είναι ή της κλάσης Θεοδωρίδη ή της κλάσης Καραπαπά
Λεύκιππος said
Τώρα, να πέφτει η ΑΕΚ (και ο Άρης) τρεις κατηγορίες αφήνοντας απλήρωτους θεούς και δαίμονας μεταφέροντας τα χρέη στον φορολογούμενο (εμάς δλδ) και να βγαίνει ο Μελισσανίδης να το παίζει σωτήρας με Αγιασοφιές και παγόδες, εεε τι να πεις σ’ αυτούς που τον αποθεώνουν; Τζι, έχεις δίκιο
gpointofview said
# 115 συνέχεια
Κι αν απορείς γιατί ταυτίζω πράσινους και κόκκινους να στο κάνω λιανά : υπάρχει ένας κοινός παράγοντας που λέμε έμείς οι μαθηματικοί. Δώσε βάση :
Ολη η η κατρακύλα του ΠΑΟ άρχισε με την πατάτα του γηπέδου Βοτανικού-διπλή ανάπλαση και κολοκύθια με την ρίγανη. Εμπνευστής ; η Ντόρα !!
Αντίστοιχα τώρα αρχίζει η κατρακύλα του ΟΣΦΠ λόγω των ανομιών του Μαρινάκη. και ποιά είναι η κουμπάρα του ; η Ντόρα
Υ.Γ. και πόσο περήφανος αισθάνεσαι που πέρσυ ο (αγνός και αμόλυντος) ΠΑΟ ψήφιζε υπερ της διάταξης να υποβιβάζονται για χρέη και οδήγησε τον Ηρακλή στην Β’ κατηγορία και χθες ψήφιζε κατά της διάταξης και παρακαλούσε την Λάρισσα και τον Πανιώνιο για να την γλυτώσει ;
Παραμύθι βέβαια για τους αφελείς σαν και σένα, εγώ στο έχω ξεκαθαρίσει από τον Σεπτέμβρη πως θα πέσει και θα τον πάρει πιθανότατα η οικογένεια απαλλαγμένο από χρέη αλλά Μελισσανίδη
Pedis said
# 111 – ναι.
ΕΦΗ - ΕΦΗ said
Και ξαμπαίνω αργά να διαβάσω τα τελευταία σχόλια στο νήμα «Τί μας έμαθαν οι αρχαίοι λοιπόν» και …
-(και) μπαλίτσα! 🙂 🙂
102 🙂 Το διάβασα ώρα που σκυλοπείναγα και τρέξανε τα σάλια, ενώ με το κρέας δεν έχω και πολλές παρτίδες, κι αντί για τυρόπιτα πήρα αραβική πίτα με φετούλες μοσχάρι! Αλήθεια 🙂 . Εχω κι ανάμνηση από γερό φαγοπότι εκεί, στην …Αρνίσια Πόντε Βέκιο 🙂
107 τ, τροβάτα 🙂
ΕΦΗ - ΕΦΗ said
Ο Εμπεδοκλής από τον Ακράγαντα, όταν νίκησε
σε ιπποδρομία στην Ολυμπία, επειδή ήταν οπαδός του
Πυθαγόρα και δεν έτρωγε έμψυχα όντα, έπλασε ένα βόδι
από σμύρνα, λιβανωτό και απ’ τα πιο ακριβά αρώματα
και το μοίρασε σε όσους πήγαν στην εορταστική
συγκέντρωση.
Σελ.38-39
Click to access empe001.pdf
Μιχάλης Νικολάου said
107, … ο Άρνος γνωστός είναι https://en.wikipedia.org/wiki/Arno
Ο Πρόβατα πού ρέει; …
Μιας και δεν ξέρω τίποτα για τον Πρόβατα,
περίμενε να σκαρφιστώ κάτι
μπεν-Προβάτο!
Μιχάλης Νικολάου said
119, … αντί για τυρόπιτα πήρα … μοσχάρι …
Μέσ’ στη Σαρακοστή
«Αμάρτησα για το παΐδι μου!»
Γιάννης Ιατρού said
121: Μιχάλη,
μπορεί να μην ρέει ακόμα, αλλά με τις βροχές που ρίχνει…., πάντως υπάρχει τ΄όνομα τουλάχιστον
Μιχάλης Νικολάου said
123, 😀
Ω, ναι, υπάρχει και ωραία παραλία Προβατάς στην Μήλο.
Είχαμε μείνει πριν από χρόνια κάποιο καλοκαίρι.
(Είχε όντως προβατάκια δίπλα!)
gpointofview said
Παλιά ήταν Προβατάς, τώρα σκέτο Βατάς κι αργότερα Μεταβατάς !!
Μιχάλης Νικολάου said
😀
ΕΦΗ - ΕΦΗ said
Αρνοερίφια φιγουράριζαν λοιπόν, χθες τ΄απόγεμα στο ξεκόρφι στα Τουρκοβούνια,απ΄τη μεργιά του Ψυχικού!
Ζωντανά, στο φρύδι του νταμαργιού, όχι στα τσιγγέλια-μέρες που ΄ναι…
sarant said
127 Μωρέ μπράβο!
Αιμ said
Έχει στάνη από τη μεριά του Π. Ψυχικού (ανατολικά) στο Β. Τουρκοβούνι. Παλιότερα το Πάσχα σφάζανε στη Βεΐκου πάνω απ’ το (τότε) λούνα-παρκ.
Καλημέρα σας
ΕΦΗ - ΕΦΗ said
129.>>Έχει στάνη από τη μεριά του Π. Ψυχικού (ανατολικά) στο Β. Τουρκοβούνι
Aμνοερίφια χαϊκλασάτα! 🙂
ΕΦΗ - ΕΦΗ said
Καλημέρα!
Γιάννης Ιατρού said
130: Ένθα συχνάζουν ενίοτε και άλλα ρίφια 🙂
Μιχάλης Νικολάου said
107,
Μετά από εξονυχιστική έρευνα,
βλέπω πως
ο Πρόβατα
είναι παραπόταμος του
Σαλάγατα!
sarant said
133 🙂
ΕΦΗ - ΕΦΗ said
133 >>ο Πρόβατα είναι παραπόταμος του Σαλάγατα!
μαζί με το Ροβόλατα!
Φαίδρα said
» Κατά τον Διογένη τον Λαέρτιο, επιτέθηκαν στο σπίτι του επιφανούς Πυθαγόρειου Μίλωνα, όπου είχαν συγκεντρωθεί οι μαθητές του, και το πυρπόλησαν σκοτώνοντας τετρακόσιους»
Πόσοι χωρούσαν σε ένα σπίτι;