Οι λέξεις έχουν τη δική τους ιστορία

Το ιστολόγιο του Νίκου Σαραντάκου, για τη γλώσσα, τη λογοτεχνία και… όλα τα άλλα

Archive for the ‘Μαθηματικά’ Category

Ο Όμηρος, τα μαθηματικά και η αγυρτεία, ξανά

Posted by sarant στο 21 Δεκέμβριος, 2016

Το σημερινό άρθρο αποτελεί συνέχεια ενός άρθρου που είχα δημοσιεύσει, σχεδόν με τον ίδιο τίτλο, πριν από οχτώ μήνες. Τότε, είχαν δημοσιευτεί σε εφημερίδες και ιστοτόπους, άρθρα με τίτλους όπως «Με μαθηματικό κώδικα έγραψε ο Όμηρος τα έπη», που βασίζονταν σε μια ανακοίνωση που έκανε η φιλόλογος Αναστασία Τσώνη, δ.φ., στην 8η Μαθηματική Εβδομάδα που διοργανώθηκε στη Θεσσαλονίκη από την Ελληνική Μαθηματική Εταιρεία-Παράρτημα Κεντρικής Μακεδονίας από τις 30 Μαρτίου έως τις 3 Απριλίου.

Πηγή των άρθρων εκείνων ήταν μια συνομιλία της κ. Τσώνη σε συντάκτη του ΑΠΕ/ΜΠΕ. Είχα σφοδρές αντιρρήσεις για το περιεχόμενο των άρθρων και ιδίως για τις αναφορές στη θεωρία των λεξαρίθμων που κατά τη γνώμη μου είναι αγυρτεία που ασφαλώς δεν έχει θέση σε μια επιστημονική εκδήλωση όπως η Μαθηματική Εβδομάδα. Ωστόσο, διατηρούσα επιφυλάξεις διότι δεν είχα μπορέσει να βρω την ανακοίνωση της κυρίας Τσώνη, και είχα την ελπίδα ότι το  περιεχόμενο του άρθρου θα την αδικούσε.

Παρά τον αρχικό προγραμματισμό, τα Πρακτικά της εβδομάδας άργησαν να γίνουν διαθέσιμα. Είχα αγγαρέψει φίλο του ιστολογίου, εκπαιδευτικό, να τα αναζητάει σε τακτά διαστήματα -και τελικά πριν από λίγες μέρες ο φίλος μου προμηθεύτηκε το CD με τα πρακτικά κι έτσι μπόρεσα να διαβάσω το πλήρες κείμενο της ανακοίνωσης της κ. Τσώνη.

Δυστυχώς, η ανάγνωση της πλήρους ανακοίνωσης επιβεβαιώνει τους φόβους μου. Μπορεί η συντάκτρια της ανακοίνωσης να κρατάει κάποιες αποστάσεις από την αντιεπιστημονική και αναξιόπιστη θεωρία των λεξαρίθμων, αλλά την αναπτύσσει διά μακρών στο κείμενό της, ενώ ταυτόχρονα διατυπώνει εξίσου ανυπόστατες απόψεις σε θέματα ετυμολογίας. Θα επισημάνω στο σημερινό άρθρο μερικά από τα τρωτά της ανακοίνωσης.

Το πλήρες κείμενο της ανακοίνωσης είναι πολύ εκτενές και θα κατέστρεφε την ισορροπία του άρθρου αν το παρέθετα, οπότε το ανέβασα σε χωριστή σελίδα. Θα δημοσιεύσω εδώ την περίληψη της ανακοινωσης και κάποια αποσπάσματα.

Διαβάστε τη συνέχεια του άρθρου »

Posted in Ετυμολογικά, Λαθροχειρίες, Μύθοι, Μαθηματικά, Ομηρικά | Με ετικέτα: , , , | 324 Σχόλια »

Δέκα ώρες την ημέρα

Posted by sarant στο 11 Νοέμβριος, 2016

Τι κάνει κανείς δέκα ώρες την ημέρα; Μπορεί να κοιμάται, αν είναι σε μικρή ηλικία (ο ύπνος θρέφει το παιδί), μπορεί να δουλεύει, αν είναι σε μεγαλύτερη -και με βάση τα νέα εργασιακά έθιμα, οι παραπάνω από τις οχτώ ώρες θα’ναι απλήρωτες· ή μάλλον αυτό ίσχυε και με τα παλιότερα έθιμα, τώρα συχνά είναι απλήρωτες και οι πρώτες οχτώ.

Αλλά ο τίτλος, επίτηδες παραπλανητικός, δεν εννοεί μια δραστηριότητα στην οποία αφιερώνουμε, θέλοντας ή όχι, δέκα ώρες από τις εικοσιτέσσερις της μέρας μας. Εννοεί μια μέρα που θα έχει δέκα ώρες. Κι οι άλλες δεκατέσσερις ώρες, πού θα πάνε; θα ρωτήσει κάποιος. Πουθενά. Αντί η μέρα να έχει 24 ώρες, θα είχε δέκα μόνο, αλλά μεγαλύτερης διάρκειας.

Γίνεται αυτό; Υπάρχει τέτοιο σύστημα; Υπήρχε, δηλαδή είχε εφαρμοστεί. Και έπρεπε να έρθω στη Μάλτα για να το μάθω, οπότε, αφού το έμαθα, αφιερώνω το σημερινό άρθρο σε αυτό το θέμα, μήπως βρεθεί και κανένας άλλος που δεν το ξέρει.

decimaltime2Στη Μάλτα λοιπόν, πήγα στη Μντίνα, την παλιά πρωτεύουσα του νησιού πριν ο Λα Βαλέτ χτίσει τη Βαλέτα, κι εκεί υπάρχει ένα αρχοντικό, το μέγαρο Φαλσόν, που έχει μετατραπεί σε μουσείο και στεγάζει τις συλλογές που είχε μαζέψει στη διάρκεια του βίου του ο τελευταίος ιδιοκτήτης του -που δεν λεγόταν Φαλσόν.

Σε ένα δωμάτιο λοιπόν που φιλοξενούσε διάφορες μικρές συλλογές, υπήρχε και μια βιτρίνα με μια συλλογή με ρολόγια, ανάμεσα στα οποία και το ρολόι της φωτογραφίας. Η ξεναγός μάς ρώτησε τι παράξενο βλέπουμε στο ρολόι αυτό που, όπως μας διαβεβαίωσε, είναι από τα ελάχιστα του είδους του που σώζονται σε όλο τον κόσμο.

Το έβγαλα φωτογραφία για να το δείτε κι εσείς και να βρείτε τι παράξενο έχει. Βέβαια η φωτογραφία είναι κακοτραβηγμένη με το κινητό, αλλά φαίνεται αυτό που πρέπει να φανεί.

Διαβάστε τη συνέχεια του άρθρου »

Posted in Ημερολογιακά, Μαθηματικά, Ταξιδιωτικά | Με ετικέτα: , , , , , | 181 Σχόλια »

Ο Όμηρος, τα μαθηματικά και η αγυρτεία

Posted by sarant στο 11 Απρίλιος, 2016

Στην αρχή είπα πως θα είναι πρωταπριλιάτικο, διότι στα περισσότερα ηλεκτρονικά μέσα δημοσιεύτηκε ανήμερα την πρωταπριλιά, ωστόσο αυτό ήταν μάλλον ευσεβής πόθος μου -άλλωστε, τα πρώτα σχετικά άρθρα άρχισαν να δημοσιεύονται από τις 31 Μαρτίου (παράδειγμα). Εννοώ την είδηση ότι «Με μαθηματικό κώδικα έγραψε ο Όμηρος τα έπη» όπως διάλεξαν να την τιτλοφορήσουν τα Νέα, που είναι μια περίληψη της ανακοίνωσης που έκανε η φιλόλογος Αναστασία Τσώνη, δ.φ., στην 8η Μαθηματική Εβδομάδα που διοργανώθηκε στη Θεσσαλονίκη από την Ελληνική Μαθηματική Εταιρεία-Παράρτημα Κεντρικής Μακεδονίας από τις 30 Μαρτίου έως τις 3 Απριλίου.

Τα άρθρα που κατέκλυσαν τον ηλεκτρονικό τύπο (ίσως και τον έντυπο) έχουν όλα μία πηγή, και σχεδόν ταυτόσημο περιεχόμενο, αφού προέρχονται από συνομιλία της κ. Τσώνη σε συντάκτη του ΑΠΕ/ΜΠΕ. Δεν έχω ακόμη δει την ανακοίνωση της κυρίας Τσώνη, οπότε θα βασιστώ στο άρθρο που μεταφέρει τη συνέντευξη/συνομιλία μαζί της. Σε περίπτωση που το περιεχόμενο του άρθρου την αδικεί, ζητώ προκαταβολικά συγνώμη -και αν κάποιος φίλος έχει λινκ προς την ανακοίνωση, πολύ ευχαρίστως να το προσθέσει στα σχόλια. (Τα πρακτικά της Εβδομάδας, παρά τον αρχικό προγραμματισμό, δεν είναι ακόμα διαθέσιμα, όπως έμαθα).

Η ανακοίνωση πάντως έγινε, ή τουλάχιστον περιλαμβάνεται στο πρόγραμμα της Εβδομάδας, όπου το Σάββατο 2 Απριλίου και ώρα 16.00-16.20 ήταν προγραμματισμένη η ανακοίνωση της Αναστασίας Τσώνη: «Μια ανατρεπτική σπουδή για τα ομηρικά έπη. Ο ποιητής της Ιλιάδας και της Οδύσσειας διδάσκει Μαθηματικά και προσδιορίζει τη χρήση των αριθμών» (Πρόκειται για τον τίτλο, όχι για την περίληψη της ανακοίνωσης).

Σύμφωνα με το άρθρο που δημοσιεύτηκε σε πάμπολλα διαδικτυακά μέσα, άριστος γνώστης των μαθηματικών, με ιδιαίτερη προτίμηση στον αριθμό 3 φαίνεται πως ήταν ο Όμηρος.

Για να δώσει μαθηματικές προεκτάσεις στους στίχους του, ο ‘Ομηρος χρησιμοποιεί, σύμφωνα με την κ. Τσώνη, τους λεξάριθμους, στους οποίους το γράμμα «άλφα» αντιστοιχεί στον αριθμό «ένα», το «Β» στο δύο και ούτω καθεξής (μετά το «κάππα» οι αριθμοί ανεβαίνουν ανά γράμμα σε δεκάδες και μετά το «ρο» σε εκατοντάδες). Ενδεικτικά αναφέρει, ότι αν οι πρώτες τέσσερις λέξεις της Α’ Ραψωδίας της Οδύσσειας («άνδρα μοι έννεπε, μούσα») «αποκωδικοποιηθούν» με λεξάριθμους προκύπτει ο αριθμός 1182, που αν αθροιστεί ανά ψηφίο, προκύπτει και πάλι ο αριθμός τρία.

«Ολόκληρες αριθμητικές παραστάσεις καταλήγουν στον αριθμό τρία και τα πολλαπλάσιά του» υποστηρίζει η κ. Τσώνη και προσθέτει ότι στην Ιλιάδα, ολόκληρο το κείμενο οργανώνεται μαθηματικά σε τρία επίπεδα.

Δεν χρειάζεται να παραθέσω άλλο -μπορείτε να διαβάσετε τη συνέχεια στο λινκ. Υποστηρίζω ότι όσα λέει η ανακοίνωση (αν όντως τα λέει) για λεξάριθμους είναι ανοησίες και ότι κάκιστα έπραξαν οι διοργανωτές της Μαθηματικής Εβδομάδας που, πλάι σε σοβαρές και χρήσιμες ανακοινώσεις επέτρεψαν να παρουσιαστεί μια ανακοίνωση που προάγει την αγυρτεία.

Οι λεξάριθμοι είναι απάτη μεταξύ άλλων διότι από άπειρες σχέσεις διαλέγουν εκείνες που υποτίθεται ότι δείχνουν κάτι σημαδιακό, αγνοώντας όλες τις άλλες. Ο Αργυρόπουλος και άλλοι προπαγανδιστές της λεξαριθμικής θεωρίας, όπως έχουμε ξαναγράψει, επισημαίνουν, ας πούμε, ότι  τα γράμματα της λέξης ΘΕΟΣ βγάζουν λεξάριθμο 284 (9+5+70+200), όπως και της λέξης ΑΓΙΟΣ (1+3+10+70+200), όπως και της λέξης ΑΓΑΘΟΣ, άρα, λένε οι υποστηριχτές της λεξαριθμικής θεωρίας, αυτό δεν μπορεί να είναι τυχαίο: η ελληνικη γλώσσα έχει την ιδιότητα να μας δείχνει ότι ΘΕΟΣ = ΑΓΙΟΣ = ΑΓΑΘΟΣ. Βέβαια, τον ίδιο λεξάριθμο 284 βγάζουν και άλλες χιλιάδες λέξεις της ελληνικής, όπως ΑΓΡΟΙΚΟΙ, ΒΑΠΟΡΑΚΙ, ΟΙΚΟΛΟΓΙΑ, ΠΑΓΟΠΕΔΙΛΑ -περιέργως κανείς λεξαριθμιστής δεν μας είπε ότι η ελληνική γλώσσα δείχνει τη μυστική σχέση του Θεού με τα παγοπέδιλα.

Διαβάστε τη συνέχεια του άρθρου »

Posted in Λαθροχειρίες, Μύθοι, Μαθηματικά, Ομηρικά | Με ετικέτα: , , , | 335 Σχόλια »

Παναμαϊκά μεζεδάκια

Posted by sarant στο 9 Απρίλιος, 2016

Τα μεζεδάκια τα λέμε παναμαϊκά επειδή μαζεύτηκαν μέσα στη βδομάδα που σημαδεύτηκε απ’ το μεγάλο μπαμ, την αποκάλυψη για τα παναμόχαρτα, όπως αποκαλέσαμε εδώ στο ιστολόγιο τα Panama Papers, μια αποκάλυψη που δεν ξέρουμε ακόμα τις διαστάσεις που θα πάρει ούτε τα ονόματα που θα βγουν στη φόρα. Αλλά στον Παναμά αφιερώσαμε ειδικό άρθρο, εμείς εδώ απλώς σερβίρουμε μεζεδάκια -που θα μπορούσαμε να τα πούμε και παναμέζικα.

* Ξεκινάμε την επιστολή του πρωθυπουργού προς την Κριστίν Λαγκάρντ, μια επιστολή που είχε λάθη και στην αγγλική μορφή της, και στην ελληνική.

Αν η φωτογραφία που έδειξε το Χάφιποστ είναι αυθεντική, και μάλλον είναι, θα προσέξατε στην τελευταία πρόταση ένα «your share my concern» που έπρεπε να είναι «you share..» και αν το κοιτάξετε και πιο προσεκτικά θα δείτε και κακοβαλμένα κόμματα. Θα μου πείτε, λάθη πληκτρολόγησης -αλλά αυτό δεν είναι δικαιολογία.

Το ελληνικό κείμενο, που υποθέτω ότι είναι η μετάφραση του αγγλικού που έγινε από το γραφείο του πρωθυπουργού και διανεμήθηκε στα μέσα ενημέρωσης, έχει επίσης ένα λάθος, πιο ουσιαστικό αυτό. Γράφει: Το δεύτερο θέμα, έχει να κάνει με το κατά πόσο η Ελλάδα μπορεί να εμπιστευθεί και να συνεχίσει να διαπραγματεύεται καλή τη πίστη

Φυσικά, «καλή τη πίστει». Τις δοτικές ή μην τις χρησιμοποιείτε καθόλου (προτιμότερο) ή αλλιώς να τις χρησιμοποιείτε σωστά. Σχεδόν πάντα μπορούμε να το πούμε εξίσου καλά (ή και καλύτερα) χωρίς τη δοτική: με καλή πίστη, καλόπιστα.

(Αφού το είχα γράψει, είδα ότι περίπου τα ίδια λέει και ο Δαεμάνος στη Λεξιλογία -λες και τον αντέγραψα. Αλλά λέει επιπλέον, και έχει δίκιο, και για τα παραπανίσια κόμματα).

* Το Υπουργείο Παιδείας φαίνεται να πήρε κάποια σωστά μέτρα για την απλούστευση των διατυπώσεων κατά την εγγραφή των μαθητών στα σχολεία. Δεν μπαίνω όμως στην ουσία, αλλά επισημαίνω μιαν ασυνήθιστη λέξη στην ανακοίνωση του υπουργείου:

[Οι υπηρεσίες του Υπουργείου] «δεν επιτρέπεται να ζητούν από τους πολίτες να προβαίνουν στην προσκομιδή δικαιολογητικών στα οποία περιλαμβάνονται οι πληροφορίες που περιέχονται από το ΟΠΣΕΔ».

Διαβάστε τη συνέχεια του άρθρου »

Posted in Μύθοι, Μαργαριτάρια, Μαθηματικά, Μεταφραστικά, Μεζεδάκια, Ορθογραφικά | Με ετικέτα: , , , , | 242 Σχόλια »

Η μέρα του πι

Posted by sarant στο 14 Μαρτίου, 2016

piΣήμερα είναι 14 Μαρτίου, 14/3 δηλαδή, κι άμα το γράψουμε αμερικανοπρεπώς είναι 3/14, οπότε δεν είναι ανεξήγητο που διάλεξα αυτή την ημερομηνία για να παρουσιάσω ένα άρθρο αφιερωμένο στο π -μάλιστα το περίεργο είναι που δεν το σκέφτηκα νωρίτερα, κάποιαν από τις προηγούμενες χρονιές και το άφησα για φέτος, χρονιάρα μέρα.

Βέβαια, δεν θα αναφερθώ μόνο στο μαθηματικό π, αλλά με αυτή την ευκαιρία θα παρουσιάσω και ό,τι έχω να πω για το γράμμα π, κι έτσι θα έχουμε (και) ένα από τα αλφαβητικά άρθρα που βάζω πότε πότε.

Αλλά θα ξεκινήσουμε από τα μαθηματικά, όπου το π είναι πασίγνωστο επειδή συμβολίζει τον λόγο της περιφέρειας ενος κύκλου προς τη διάμετρό του, ένα μέγεθος που είναι πανταχού παρόν σε όλες τις θετικές επιστήμες. Είναι δηλαδή μια μαθηματική σταθερά, που συνήθως την προσεγγίζουμε με δύο ψηφία (3,14, που μας έδωσε και την αφορμή για το σημερινό άρθρο). Συχνά την προσεγγίζουμε επίσης με πέντε ψηφία, 3,14159, που όταν ήμουν μαθητής το θυμόμασταν με τη βοήθεια του ρητού «Αεί ο Θεός ο μέγας γεωμετρεί» (ρήση που αποδίδεται από τον Πλούταρχο στον Πλάτωνα).

Ωστόσο, πρέπει να πούμε ότι η σταθερά π είναι άρρητος αριθμός, έχει δηλαδή άπειρα δεκαδικά ψηφία και μια από τις εφαρμογές των υπερυπολογιστών είναι να βρίσκουν εκατομμύρια και άλλα εκατομμύρια ψηφία του π, όρεξη να έχει κανείς.

Διαβάστε τη συνέχεια του άρθρου »

Posted in όπερα, Αθυροστομίες, Αλφάβητο, Λεξικογραφικά, Μαθηματικά | Με ετικέτα: , , , , | 202 Σχόλια »

Ο μαγικός αριθμός 180

Posted by sarant στο 29 Δεκέμβριος, 2014

Σήμερα το μεσημέρι γίνεται η τρίτη ψηφοφορία στη Βουλή για την εκλογή Προέδρου της Δημοκρατίας κι έτσι σε μερικές ώρες από τώρα θα ξέρουμε αν θα συγκεντρωθεί ο αριθμός των 180 βουλευτών που απαιτείται από το Σύνταγμα ή αν θα πάμε για εκλογές -και πότε. Ως τώρα, τα προγνωστικά δείχνουν ότι οδεύουμε προς εκλογές, και μάλλον την 1η του Φλεβάρη, αλλά σε λίγο θα ξέρουμε και αν θα επαληθευτούν.

Για να είμαι ακριβέστερος, το Σύνταγμα δεν αναφέρει τον αριθμό 180. Η σχετική διάταξη (άρθρο 32, παράγραφος 3) κάνει λόγο για πλειοψηφία «των τριών πέμπτων του όλου αριθμού των βουλευτών», και τούτο επειδή το Σύνταγμα δεν ορίζει έναν συγκεκριμένο αριθμό βουλευτών, αλλά απλώς προβλέπει ότι ο αριθμός τους πρέπει να είναι μεταξύ 200 και 300. Ο συγκεκριμένος αριθμός ορίζεται από τον εκλογικό νόμο (νομίζω) και αφού οι βουλευτές είναι 300 τα 3/5 είναι οι 180 (και τα 2/3 που ίσχυαν για τις πρώτες δύο ψηφοφορίες είναι οι 200 βουλευτές).

Κι έτσι, ο αριθμός των 180 βουλευτών, τα 3/5 του συνόλου, έχει χαρακτηριστεί από πάρα πολλούς «μαγικός αριθμός». Μαγικός όχι για τις όποιες εγγενείς ιδιότητές του, αλλά επειδή, αν συγκεντρωθούν τόσες ψήφοι (ή: τόσοι ψήφοι στα πιο λαϊκά) θα εκλεγεί Πρόεδρος. Παίρνω ένα τυχαίο παράδειγμα: Καθώς υπολείπονται 12 ψήφοι για να επιτευχθεί ο “μαγικός αριθμός” 180… γράφει ένας ιστότοπος.

Πράγματι, 12 ψήφοι λείπουν, αφού θεωρείται δεδομένο πως οι 168 που ψήφισαν Σταύρο Δήμα τις προάλλες θα το επαναλάβουν και σήμερα. Θα βρεθούν; Είπαμε, όλα δείχνουν πως όχι, όμως δεν μπορούμε να το αποκλείσουμε. Αλλά… μεσημέρι κοντή γιορτή, για να παραφράσουμε την παροιμία, το σημερινό άρθρο θα είχε πολύ περιορισμένη διατηρησιμότητα αν περιοριζόταν σε εικασίες για τη δυνατότητα εκλογής Προέδρου.

Ωστόσο, ο αριθμός 180 έχει πράγματι μερικές πολύ ενδιαφέρουσες ιδιότητες, οπότε θα αφιερώσω το υπόλοιπο άρθρο σε αριθμολογία. Εννοείται ότι στα σχόλια μπορούμε να συζητήσουμε και το αποτέλεσμα της ψηφοφορίας, καθώς και τις προοπτικές που θα ανοίξει -είτε συγκεντρωθεί ο, μαγικός είπαμε, αριθμός, είτε όχι.

Καταρχάς, εύκολα βλέπουμε ότι ο αριθμός 180 έχει πολλούς διαιρέτες. Πόσους; Να μετρήσουμε: 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180, σύνολο 18. Αυτό τον κάνει υπερσύνθετο αριθμό (για να αποδώσω το αγγλικό highly composite), δηλαδή έχει περισσότερους διαιρέτες από κάθε άλλον μικρότερό του θετικόν ακέραιο αριθμό.

Κατά σύμπτωση, και ο αριθμός των 168 βουλευτών που είναι το «κεφάλαιο», ας πούμε, με το οποίο προσέρχεται στην τελευταία ψηφοφορία ο κ. Σταύρος Δήμας, έχει κι αυτός αρκετούς διαιρέτες (διαιρείται μάλιστα με το 7, με το οποίο δεν διαιρείται ο 180). Μάλιστα, ένας από τους κοινούς τους διαιρέτες είναι το 12. Ο κ. Δήμας έχει συγκεντρώσει δεκατέσσερις δωδεκάδες βουλευτές, αλλά του λείπει η τελευταία ντουζίνα.

Ο αριθμός 180 δεν είναι τετράγωνο άλλου αριθμού, η ρίζα του είναι ανάμεσα στο 13 και στο 14, αλλά είναι άθροισμα δύο τετραγώνων: 180 = 144+36, δηλαδή 180 = 122 + 62. Είχαμε πει στο προηγούμενο αριθμοψηφολογικό άρθρο ότι ο αριθμός 168 μπορεί να εκφραστεί ως άθροισμα τεσσάρων συνεχόμενων πρώτων αριθμών (37+41+43+47), αλλά ο 180 μπορεί να εκφραστεί σαν άθροισμα όχι τεσσάρων, αλλά έξι συνεχόμενων πρώτων (19+23+29+31+37+41) ή ακόμα και οχτώ πρώτων (11+13+17+19+ 23+29+31+37)!

Μπορούμε να βρούμε και πιο εξεζητημένες ιδιότητες -ας πούμε, το 180 στον κύβο είναι άθροισμα 64 συνεχόμενων κύβων:
1803 = 63 + 73 +83 +… + 683 +693
(δεν το έχω τσεκάρει, κάπου το βρήκα!)

Αυτά όμως είναι κάπως ειδικά και γοητεύουν τους πιο μυημένους. Οι μαθηματικές ιδιότητες του 180 για τους λιγότερο μπασμένους στο βασίλειο των αριθμών έχουν σχέση με τον κύκλο και με τα τρίγωνα. Ο κύκλος έχει 360 μοίρες, που σημαίνει ότι το ημικύκλιο έχει 180 μοίρες -κι αν σκεφτούμε ότι η αίθουσα της Βουλής έχει σχήμα ημικυκλικό ή συχνά παριστάνεται σαν ημικύκλιο π.χ. στα διαγράμματα όπου φαίνεται η κατανομή των εδρών ανάμεσα στα κόμματα, φαίνεται πολύ ταιριαστό να χρειάζονται 180 ψήφοι, όσες και οι μοίρες του ημικυκλίου, για να μπορεί κάποιος να επηρεάσει καθοριστικά τη μοίρα της αίθουσας και της χώρας.

Γιατί έχει 360 μοίρες ο κύκλος (και κατ’ επέκταση 180 το ημικύκλιο; ) Πώς ήρθε στους Βαβυλώνιους η ιδέα να χωρίσουν τον κύκλο σε 360 ίσα μέρη και όχι σε κάποιον άλλο αριθμό; Κάποιο ρόλο πρέπει να έπαιξε το γεγονός ότι το έτος, δηλαδή η διάρκεια μιας πλήρης (σικ, έτσι για αλλαγή) περιστροφής της γης γύρω από τον ήλιο, έχει «περίπου» 360 μέρες, όπως επίσης και το ότι ο κύκλος, μπορεί να χωριστεί σε έξι ισόπλευρα τρίγωνα, και κάθε εκτημόριο (που έχει 60 μοίρες, ξέρουμε σήμερα) πιθανώς να το διαίρεσαν διά του 60, αφού είχαν εξηκονταδικό αριθμητικό σύστημα. Δεν λέω όμως περισσότερα διότι στο ιστολόγιο υπάρχουν σχολιαστές πολύ αρμοδιότεροι από μένα για το ζήτημα αυτό.

Το θέμα είναι ότι ο μισός κύκλος έχει 180 μοίρες, γι’ αυτό κι όταν θέλουμε να πούμε ότι κάποιος άλλαξε ριζικά τις απόψεις του, μεταστράφηκε προς την αντίθετη κατεύθυνση, μπορούμε να πούμε ότι «έκανε στροφή 180 μοιρών». Μερικοί μάλιστα αγεωμέτρητοι (παράδειγμα) νομίζουν ότι αν πουν «έκανε στροφή 360 μοιρών» δηλώνουν ακόμα πιο ριζική μεταστροφή -όμως με τις 360 μοίρες κλείνει ο κύκλος και επανερχόμαστε εκεί που βρισκόμασταν.

Οι 360 μοίρες ισοδυναμούν με 2π ακτίνια, άρα οι 180 μοίρες με π ακτίνια, οπότε κατά κάποιο τρόπο μπορούμε να αντιστοιχίσουμε το 180 με το π. Όχι με το γράμμα Π στο ελληνικό αριθμητικό σύστημα (Π είναι το 80), αλλά με το π το μαθηματικό, το 3,14 (και πάει λέγοντας) που είναι ο λόγος της περιφέρειας του κύκλου διά τη διάμετρό του.

Και βέβαια, 180 μοίρες είναι και το άθροισμα των γωνιών ενός τριγώνου, που είναι μια πολύ βασική αρχή της γεωμετρίας -και που μια συνέπειά της είδαμε πιο πάνω, ότι οι γωνίες του ισόπλευρου τριγώνου, που είναι και οι τρεις ίσες μεταξύ τους, έχουν τιμή 60 μοίρες.

Μια άλλη εμφάνιση του αριθμού 180 έξω από τη γεωμετρία έχουμε στη φυσική. Στην θερμοκρασιακή κλίμακα Φαρενάιτ, το σημείο πήξης του νερού είναι στους 32 βαθμούς (αντίστοιχο των μηδέν βαθμών Κελσίου), ενώ το σημείο βρασμού είναι 212 βαθμοί (αντίστοιχο των 100 Κελσίου), άρα οι 100 βαθμοί Κελσίου αντιστοιχούν σε 180 Φαρενάιτ και από εκεί προέρχεται και ο λόγος 5/9 που χρησιμοποιείται στις μετατροπές μεταξύ C και F.

Επίσης οι 180 βαθμοί (Κελσίου) είναι μια συνηθισμένη θερμοκρασία του φούρνου όταν μαγειρεύουν. Μάλιστα, αυτός είναι και ο τίτλος ενός γαλλικού μαγειρικού περιοδικού, 180c.fr.

Σε λίγη ώρα θα ξέρουμε αν συγκεντρώθηκε ο μαγικός αριθμός, αν και ποιος θα τσουρουφλιστεί, αν θα βγει ΠτΔ ή αν (και πότε) θα έχουμε εκλογές. Τα σχόλιά σας λοιπόν!

Posted in Αριθμοί, Αριθμολογία, Γεωμετρία, Επικαιρότητα, Εκλογές, Μαθηματικά | Με ετικέτα: , , , | 229 Σχόλια »

Τεταρταυγουστιανά μεζεδάκια

Posted by sarant στο 4 Αύγουστος, 2012

Και αναρωτιέται κανείς -είναι τάχα μεζεδάκια που αφορούντην 4η Αυγούστου, τη δικτατορία του Ιωάννη Μεταξά δηλαδή, που επιβλήθηκε στις 4 Αυγούστου 1936 ή ονομάστηκαν έτσι απλώς και μόνο επειδή σήμερα Σάββατο, που το μενού του ιστολογίου γράφει «Μεζεδάκια», έτυχε να πέσει 4 Αυγούστου; Και τα δύο. Τα κανονικά μεζεδάκια είναι λιγοστά, λόγω καύσωνα και γενικότερης ραστώνης (είναι αυτό που είχε πει ο Ουμπέρτο Έκο: τον Αύγουστο δεν υπάρχουν μεζεδάκια), οπότε είπα να τα συμπληρώσω με ένα παλιότερο άρθρο με τεταρταυγουστιανό θέμα.  Βλέπετε, δεν παρακολουθώ και τους Ολυμπιακούς, οπότε θα μάζευα, είμαι βέβαιος, αρκετά μεζεδάκια (αλλά είναι σαν να κλέβεις εκκλησία!).

Και ξεκινάω με τη σχιζολεξία της εβδομάδας, που είναι μια ευγενική προσφορά του skai.gr : Την ενόχλησή της εξέφρασε η κοινοβουλευτική ομάδα του ΠΑΣΟΚ που συνεδρίασε για τη διαδικασία του κατ’ επείγοντος, με την οποία θα εισαχθεί το νομοσχέδιο για την Ανώτατη Εκπαίδευση. Και στον τίτλο του άρθρου, πιο συνοπτικά,  με άλλη διατύπωση, αλλά η σχιζολεξία σχιζολεξία: ΚΟ ΠΑΣΟΚ: Ενόχληση για το κατ΄ επείγον στο ν/σ της ανώτατης εκπαίδευσης. Πάλι καλά να λέτε, που δεν έγραψαν ότι με τη δια-δικασία του κατ’ επείγοντος θα εισ-αχθεί το νόμο-σχέδιο για την εκ-παίδευση!

Διαβάστε τη συνέχεια του άρθρου »

Posted in Επετειακά, Μαθηματικά, Μεζεδάκια, Πρόσφατη ιστορία, Ποίηση, Σατιρικά | Με ετικέτα: , , , , , | 103 Σχόλια »